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Abstract:  
Concept drift describes changes in statistical properties of incoming data instances for online 

classification over time. It causes a decrease in classifiers’ accuracy as time passes (non stationary 

data stream). By monitoring online classifier’s performance measures over time, we would like to 

detect concept drift using MODL discretization method on a mixture of two observation time 

windows: one representing properties of stationary state, the other representing current state. If 

MODL method is able to distingue measure values from the two windows, our method will detect a 

concept drift, otherwise the targeted data stream is still stationary.  

Résumé: 
En classification, les propriétés statistiques de la variable cible, que le modèle essaie de prédire, 

peuvent évaluer au cours du temps d'une manière imprévue. On parle alors de changement de 

concept (Concept drift) pose des problèmes parce que les prédictions deviennent moins exactes au 

fur et à mesure que le temps passe (données non stationnaires).  En surveillant les mesures de 

performance en ligne du classifier, on applique la méthode de discrétisation MODL sur le mélange de 

deux fenêtres d’observation : l’une de référence représentant les propriétés historiques d’un état 

stationnaire, l’autre pour celles actuelles supposées être différentes s’il y a un concept drift. Si la 

discrétisation MODL réussit à discriminer/séparer les variables des deux fenêtres, notre méthode 

détectera un concept drift, sinon on reste à l’état stationnaire.  
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Notations 
 

      data generating source   

   probability distribution 

   size of dataset 

  training data set size 

       class labels 

  attributes of  ith instance in memory 

   attributes of instance coming at time t 

      class label/ attribute of         

W  number of “recent” examples ( time window size) 

            set of indexes of all available instances in memory  

   estimated label 

   probability of misclassifiying of error rate at time t   

   standard deviation of error rate at time t 

  



 

8 

1 Orange and France Telecom Group 

France Telecom-Orange is one of the world’s leading telecommunications operators with 171,000 

employees worldwide, including 105,000 employees in France, and sales of 10 billion Euros in the first 

three months of 2012. Present in 33 countries, the group had a customer base of 225 million 

customers at 31 March 2012, including 181 million customers under the Orange brand, the Group's 

single brand for internet, television and mobile services in the majority of countries where the 

company operates. Orange is one of the main European operators for mobile and broadband internet 

services and, under the brand Orange Business Services, is one of the world leaders in providing 

telecommunication services to multinational companies. (http://www.orange.com/en/group) 
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2 Introduction of our problem 

2.1 Concept drift  

Concept drift refers to a non stationary machine learning problem over time. A sequence of instances 

is observed, one instance at a time, not necessarily in equal spaced-time intervals.        is a vector 

in p-dimensional feature space observed at time t and              its corresponding label. The 

concept or data source is defined as a set of prior probabilities of classes and class-conditional 

probability density functions. 

                          

There is a concept drift if for any two time points   and  ,       .  In another way, a concept drift 

indicates changes in the posterior distributions of data       . 

Assuming that the concept of a sequence of instance changes from      to    , we call a drift a sudden 

drift, if at time t,     is suddenly replaced by   .  

Instead of a sudden change which means that the source is switched during a very short period of 

time after the change point t, gradual drift refers to a change with a period both sources     and     

are active. As time passes, the probability of sampling from source      decreases, probability of 

sampling from source     increases until      is completely replaced by     . There is another type of 

gradual drift called incremental or stepwise drift. With more than two sources, the difference 

between the sources is very small, thus the drift is noticed only when looking at a longer time period. 

Reoccurring context means that previously active concept reappears after some time. It is not 

certainly periodic. So there is not any predictive information on when the source will reappear.  In 

Figure 1, we can see how these changes happen in the mean of a dataset. 

 

Figure 1 Concept Changes in the mean of a sequential data (Žliobaite, 2010) 
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2.2 Strategies / categories  

Strategies for handling concept drift can be presented as table below in two dimensions. 

 Trigger-based Evolving  

Single classifier Detectors(variable time 

windows) 

Forgetting(fixed time windows, 

instance weighting) 

Ensemble Contextual (dynamic 

integration, meta learning)  

Dynamic ensemble(adaptive 

combination rules) 

Trigger-based means that there is a signal which indicates a need for model change. The trigger 

directly influences how the new model should be constructed. Most often change detectors are used 

as triggers.  

Evolving methods, on the contrary, do not maintain an explicit link between data progress and model 

construction, and usually do not detect changes. Evolving learners adapt at every step and it often 

corresponds to a forgetting mechanism. There is not explicit change detection. They provide neither 

indication about change points nor dynamics of the process generation data.  

Ensemble algorithm consists of a set of different single classifiers whose decisions are aggregated by a 

voting rule or given by a properly chosen classifier according to the observed incoming data 

(contextual). The decision produced by the former strategy is usually more accurate than the decision 

given by a single classifier. It is necessary to diversify ensemble members from each other.  
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2.3 Incremental learning 

2.3.1 Adaptive methods  

The adaption model is characterized by changing the decision model to adapt to the most recent 

examples. We can overview this part in two dimensions: “when” and “how” the adaption is applied. 

“Blind methods” or evolving methods reconfigure the learner at regular intervals without considering 

whether changes have really occurred. Another type of adaptive models is “informed method” usually 

used on trigger-based classifiers. They only change the decision model after a change is detected.  

The adaptivity can be achieved by adjusting training set with forgetting mechanism which punishes 

irrelevant data. Window technique with fixed or variable size is widely used. With change detector, 

the window is cut at the change point and the data before the change alarm are deleted. “Instance 

weighting” also represents the forgetting mechanism by giving each stored instance a time related 

similarity measure(weight) which signifies its importance on decision making procedure. Another 

group of methods use instance selection. The incoming testing instances (unlabeled) are inspected. 

Based on the similarity between the testing instance and profiled partitions of the training set, one is 

chosen and used for building the classifier for prediction. After updating training set to concept drift, 

it is necessary to retrain the learner. For some learners such as Naïve Bayes and SVM, reconstruction 

of the whole decision model is required. On the contrary, for granular decision models like decision 

rules and decision trees, we just need to rebuild part of the decision model or adjust decision model’s 

parameters by resuming recent data.  

2.3.2 Ensemble update strategies 

For classifier ensembles, adaptive method is more flexible, because it is able to adjust fusion rules 

(e.g. base learner weights), update training data, delete or add ensemble members, and modify 

ensemble structure(decision trees). 

2.3.3 Base online learners  

2.3.3.1 VFDT, Hoeffding Tree 

Hoeffding Tree (Pedro Domingos, 2000) is an incremental decision tree algorithm using Hoeffding 

bound as split decision function, which only a small subset of incoming instances passing through is 

needed to find the best split. 

2.3.3.2 Naive Bayes 

Naïve Bayes classifier (Langley, 1992)  is a conditional probabilistic model classifier based on Bayes’ 

theorem and assuming that variables are independent.    

According to Bayes’ theorem, the conditional probability for an instance to be classified into class Y 

given its variable values becomes  
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Supposing that all these variables are independent, the decision/prediction of the classifier    can be 

written as 

                             

 

   

 

2.3.3.3 Perceptron 

Perceptron (Rosenblatt, 1957) is a linear binary classifier which can be regarded as a single layer 

artificial neural network, whose decision model is : 

      
           
                 

  

Where x is the input variable, w is a vector of real-valued weight, wx is the dot product, and b is the 

“bias”. 

2.3.3.4 SGD (Stochastic Gradient Descent) 

Stochastic Gradient Descent (SGD) (Bottou, 2004) classifier uses linear model whose parameters are 

estimated by gradient descent optimization method for minimizing its object function, usually least 

squares or least mean squares.  
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3 Related Work 

3.1 Concept Drift Detection 

Change detectors monitor real-time measures and send alarms as soon as drifts are detected. A good 

test reduces detection delay (i.e., time needed to detect the change) and minimizes both false 

positive and negative detection numbers. Multiple or hierarchical detectors are sometimes applied to 

deal with different types of concept drifts and reduce false positive number. Measures monitored are 

usually classifier’s performance indicators or data properties in order to indicate the change point in 

time.  

3.1.1 Classifier’s performance measures  

When there is a change in examples class-distribution, classifier’s actual model does not correspond 

to the actual distribution any more. Meanwhile, its error-rate increases. The basic idea of change 

detection in predictive learning is monitoring its prediction quality.  

FLORA family algorithms (Kubat., 1996) monitor accuracy and model size. It includes a window 

adjustment heuristic for a rule-based classifier. Flora3 deals with recurring concepts. (Klinkenberg, 

1998) proposes to monitor performance indicators (accuracy, recall and precision over time), and 

compare them to a confidence interval of standard sample errors for a moving average value using 

the last M batches for each particular indicator.  

Statistical Test of Equal Proportions (STEPD) (Kyosuke Nishida, 2007) is based on the assumption that 

classifier’s accuracy on recent W examples will be equal to the overall accuracy from the beginning of 

the learning if the target concept is stationary; a significant decrease of recent accuracy suggests that 

the concept is changing. It calculates a measure T which can be regarded equivalent to chi-square test 

with Yates’ continuity correction and compares it to the percentile of the standard normal 

distribution to obtain the observed significance level, P. It stores examples in short term memory 

while       ; rebuilds the classifier from the stored examples and resets  all variables if      . 

Stored examples are removed if      . 

3.1.2 Model properties  

Model evaluation can be monitored to detect concept drift using indicators such as model complexity 

and memory size. For decision trees, it could be tree size, attribute-class statistics (Bifet, 2009), or 

misclassification number for a node (Gama J. R., 2003). 

3.1.3 Data properties  

Another assumption is that after a concept drift occurs, current incoming data distribution differs 

from the one before. So we just need to monitor the data distribution variance using statistical 

methods. For numeric sequences, we can apply a sequential analysis. CUSUM test (Page, 1954) 

detects significant increase or decrease in successive observation of a random variable. GMA 

(geometric moving average test) (Roberts., 2000) is an alternative of CUSUM test. SPRT (Sequential 

probability ration test) (Wald, 1947) calculates the cumulative sum of the log-likelihood ratio as new 

data arrive with specific sequential hypothesis. For example, we have two hypotheses 

      represented by their probability distribution functions       . As the ith instance    arrives, we 

calculate the cumulative sum of the log-likelihood ratio. 
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Then compare the sum with two thresholds a, b decided beforehand. 

                            

               

               

The changes are detected by the passage from one hypothesis to the other. 

Another option is to monitor distributions on two or multiple different time-windows.  

Mann-Kendall test evaluates the signs of observed values differences.  

Density estimation on data analysis (Alexis Bondu B. G.-L., 2010) summarizes the input data stream 

by micro-clustering algorithm “Denstream”, and estimates the underlying distribution of incoming 

data stream periodically using a variant of Parzen window. It sends an alarm if the distance between 

the current estimated distribution and a reference distribution evaluated by the Kullback-Leibler 

divergence is significant. Thus there is a diagnostic evaluating the cause of concept drift. ACED 

(Nishida, 2005) calculates    , the predictive accuracy of the online classifier for recent W examples, 

and the      confidence interval for    whose lower endpoint is   
 
. . When   

   
   , it declares 

a concept drift and initializes the classifier after 2W examples arrived. It is able to detect concept drift 

quickly when W is small; however, such small window size often causes misdetection.  

ADWIN change detector keeps a sliding time-window with the most recent examples divided into 2 

sub-windows. When these “large enough” sub windows exhibit “distinct enough” averages, we can 

conclude that there is a concept change and the older portion of the window is dropped. Statistical 

test on different distributions is to check whether the observed average in both sub windows is more 

than the threshold.  

Test on p-value (Anton Dries, 2009) assumes that a small p-value suggests that a concept drift is 

likely. The system signals the discovery of a new concept if a peak in the sequence of p-values is 

detected.  
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4 Testing/validation methodology  

4.1 Test Protocol 

For offline classifiers:  

Holdout evaluation: Holdout an independent test set. Apply the current decision model to the test 

set at regular time intervals or set of examples. The loss estimated in the holdout is an unbiased 

estimator. 

For online classifiers:  

Interleave Test-Then-Train: Each individual example is used to test the model before it is used for 

training, and from this the accuracy is incrementally updated. Its advantage is that the model is 

always being tested on unseen examples and no holdout set is needed so that available data are fully 

used. It also produces smooth plot accuracy over time. 

4.2 Indicators 

A good learner handling concept drift should have high accuracy, low computational cost (memory 

space and operational time) and fast reliable change detection.  

Change detection performance could be evaluated on:  

- False positives (FP) counts number of detections that a test sends in the sequence when 

there is not. The ideal drift detection algorithm should not be too much influenced by noise. 

- False negatives (FN) counts the times that a test does not detect a change when there is 

one. 

- Recognition delay (RD) measures delay time for change detection. 

- Computational time (CT) provides execution time needed to perform the test detector on a 

reference platform.  

- Memory occupation is the size of memory occupied for storing examples and model 

parameters over time.  

- Ram-Hour (Albert Bifet G. H., 2010) counts cost per hour and memory used at the same 

time. Every GB of RAM deployed for 1 hour equals to 1 RAM-Hour. It is a measure on 

resource used by classifiers during learning procedure. It fits practically pricing strategies for 

main cloud computing service providers, such as Amazon EC2 and Microsoft Azure.  

4.3 Dataset  

4.3.1 Concept drift generators 

A general way to generate concept drifts is to mix data with different characteristics into one stream 

and modify its composition to create various types of concept drifts.  

In order to test concept drift detectors, we can use a single labeled dataset. We regroup all examples 

by label. Each new dataset contains all the attributes except the class label column. They are assumed 

to be generated by different concept. We usually use two or three classes having the most members. 

It’s easy for pre-treatment but not possible to evaluate classifiers’ performance. When several 
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datasets are available, we concatenate the lists of attributes from all of them, and the number of 

classes is set to the maximum number of classes to fit all dataset. 

To create sudden drift, we just need to use one dataset before the breakpoint and switch to another 

after it. Gradual drifts are more complicated. (Bifet, 2009) suggests to join two datasets using the 

sigmoid function by modifying their proportion on the new data stream gradually. The function can be 

parameterized by the location of change point and the length of change interval.  Reoccurring drifts 

are achieved by repeating this procedure to replace the current dataset by the “previous” one. It’s 

also possible to introduce multiple concepts sequentially into our test data stream. This method 

builds a labeled data stream which is available for evaluating classifiers and can be controlled so that 

it’s possible to create divers situations. However, joining datasets from sources with little nature alike 

may lead to insensible change detectors, as it’s not the common case in reality. 

4.3.2 Synthetic data generators 

MOA (Massive Online Analysis) contains a serial of artificial stream generators as SEA concepts, 

STAGGER, rotating hyperplane, random tree, and random radius based functions. (Albert Bifet G. H., 

2011) 

- SEA Concept generator (Kim, 2001) contains abrupt drift and generates points with 3 

attributes between 0 and 10 where only the first 2 attributes are relevant. These points are 

divided into 4 blocks with different concepts by giving each block a threshold value which is 

the upper bound to the sum of the first two attributes. 

- STAGGER (Granger, 1986) is a collection of elements, where each individual element is a 

Boolean function of attribute-valued pairs represented by a disjunct of conjuncts. 

- Rotating hyperplane (G. Hulten, 2001) uses a hyperplane in d-dimension as the one in SVM 

and determines the sign of labels. It’s useful for simulating time-changing concepts, because 

we can change the orientation and position of the hyperplane in a smooth manner by 

changing the relative size of weights. 

- Random RBF (Bifet, 2009) creates numerical dataset whose classes are represented in 

hyperphere of examples with random centers.  Population of each class depends on its 

weight. The probability that a point is distributed in a position is calculated by a radical basis 

function on its distance from its centers.  

- LED (Leo Breiman, 1984) (LED Display Domain Data Set ) is composed of 7 Boolean attributes 

which are predicted LED displays (the light is on or not) and 10 concepts. Each attribute value 

has the 10% of its value inverted. It has an optimal Bayes classification rate of 74%.  

- Waveform (Waveform Database Generator (Version 2) DataSet) (Leo Breiman, 1984) 

produces 40 attributes including noise, and the latter 19 attributes are all noise attributes 

with mean 0 and variance 1. It differentiates between 3 different classes of waves, each of 

which is generated from a combination of two or three base waves. 

- Function generator (Rakesh Agrawal, 1993) produces a stream containing 9 attributes, 6 

numeric and 3 categorical, describing hypothetical loan applications. The classes (whether 

the loan should be approved) are presented in a Boolean label defined by 10 functions. 

4.3.3 Real world data 

In many articles, the UCI Machine Learning Repository is cited as real world data source. Here we 

introduce several most used datasets on concept drift handling. 
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- Forest Cover type dataset (Covertype) contains 581012 instances of 54 categorical and 

integer attributes describing wildness areas’ condition collected from US Forest Service 

(USFS) Region 2 Resource Information System (RIS) and US Geological Survey (USGS) and 

USFS data. The class set consists of is 7 forest cover types. 

- Poker-Hand dataset (Poker Hand): Each record is an example of a hand consisting of five 

playing cards drawn from a standard deck of 52. Each card is described using two attributes 

(suit and rank), for a total of 10 predictive attributes. There is one Class attribute that 

describes the "Poker Hand". The order of cards is important, which is why there are 480 

possible Royal Flush hands as compared to 4.  

- Electricity dataset (Harries, 1999): This data was collected from the Australian New South 

Wales Electricity Market. It contains 45312 instances drawn from 7 May 1996 to 5 December 

1998 with one instance for each half hour. The class label (DOWN or UP) identifies the 

change of the price related to a moving average of the last 24 hours. The attributes are time, 

electricity demands and scheduled power transfer between states, all of which are numeric 

values. 
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5 Inspiration 

5.1 Drift Detection Method (DDM) 

(Gama J. M., 2004) introduces Drift Detection Method (DDM) monitoring incremental global error 

rate of an online learner. The error rate at time t is   ,  probability of misclassifying; 

   
                             

                                    
 

      
    

    

 
                                                     

   
  

 
                                                                                             

  

And its standard deviation is calculated by  

               

 

It is assumed that    decreases as time advances if the target concept keeps stationary; otherwise, 

significant increase of    is observed.  

The values of    and    are stored when        reaches its minimum. If the performance indictor for 

each prediction    equals to 0, if the prediction is false; 1, if it’s correct. Then after reaching the 

classifier’s stable state on stationary data stream,    follows Bernoulli distribution with p=     . So 

the sum of    follows Gaussian distribution with pmin as mean and smin as standard deviation. This 

hypothesis can be available at least if there are a large number of examples (n>30 by default 

proposed by the authors). Two thresholds are fixed by estimating p-value. New examples are kept in 

short term memory while                  . The concept drift is detected and we need to 

rebuild the classifier from the stored examples and reset all variables if                 .  

This method performs well for detecting sudden changes. But it has difficulties detecting gradual 

changes. The hypothesis is not available because theoretically    is not identically independently 

distributed, because for incremental learners keeps learning even if incoming instances are iid, we 

can’t say its performance is not temporal /dynamic. 
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DDM Algorithm 
 

Parameters: MinNbForDetection=30 (default value) 
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf 
while (an instance         comes in){ 

n=n+1 
 Learner predicts on     

if (the prediction is false ) {  
         p=p+(1-p)/n 
} 

 else { 
                       p=p-p/n 
                } 

s=          

 if (p+s<= pmin+ smin){ pmin=p   smin=s} 
 if (n>MinNbForDetection){ 
                              ddm=                  

If(ddm 3)){ 
 Drift detected 
} 

  Else if(ddm 2) { 

   Warning sent 
} 

                } 
               If neither drift nor warning : stationary state 
} 

 

After observing figures of Annex 3, we notice that DDM does not work well with learners like 

Hoeffding Tree, which intern modification while learning is not gradual, and perceptron, which only 

keeps short term memory. 
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5.2 Early drift detection method 

EDDM (early drift detection method) (Baena-Garcia, 2006) monitors the time interval (distance) 

between two occurrences of classification errors. The assumption is that any significant decrease in 

the distance suggests changes on concept. It calculates the average distance between two errors     

and its standard      ; keeps in memory values of     and     when           reaches its maximum; 

stores examples in short-term memory while  
      

          
   ; rebuilds the classifier from the stored 

examples and resets all variables if  
      

          
  . The detection starts after 30 errors have 

occurred. The method performs well for gradual changes; but it is not good at detection drift in noisy 

examples. 

EDDM Algorithm 

Parameters: MinNbForDetection=30 (default value),  ,   
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf 
while (an instance         comes in){ 

n=n+1 
 Learner predicts on     
  

if (the prediction is  false ) {  
            p=p+(1-p)/n 
} 

 else { 
                          p=p-p/n 
               } 

s=          

  
 if (p+s<= pmin+ smin){ pmin=p   smin=s} 
 
               if (n>MinNbForDetection){ 

                             eddm=
      

          
 

If(      )) Drift detected 
  Else if(      )    Warning sent 

} 
               If neither drift nor warning : Stationary state 
}  
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5.3 Alexis Bondu’s  Supervised approach for change detection proposition  

5.3.1 MODL : a supervised discretization approach and a supervised grouping 

approach 

In this section we discuss the MODL method for discretization on continuous attributes and grouping 

on categorical variables.  

The MODL method is based on a Bayesian approach of the discretization problem which means that 

the optimized method is obtained by maximizing the probability P(Model|Data) of the model given 

data. According to Bayesian rule and considering that the probability P(Data) is constant while the 

model varies, we just need to maximize P(Model)P(Data|Model)  

or minimize  C(Model)=-[log(P(Model))+log(P(Data|Model)] . 

The MODL model is defined by  

- I: the number of intervals 

-           : the number of examples located in the interval i 

-                 
: the number of examples labeled by the class j located in the interval i 

Then the problem is transferred into a model selection problem. Then C(Model) becomes 

                  
     

   
       

      
   

 

   

     
   

             
   

 

where 

                         
     

   
       

      
   

     

                          
   

             
    

            

The quality of the optimal MODL model, called Map (Maximum A Posteriori), is evaluated by  

       
      

     
 

where    is the null model which discretizes the variable into only one interval. 

Gain (compression rate) is equal to 0 if the variable can not be discriminated, indicating that the 

distributions of variables with different label is similar or the same.  Otherwise, the Gain value is 

strictly positive and increases as the difference in distribution becomes more and more significant. 

Finally, the Gain can reach to 1, when the variable can be perfectly discriminated by the model and 

indicates there’s no cross-over between the labels’ distribution. 

In this way, the MODL discretization method becomes a univariate hypothesis test for similarity like 

Chi2 test on distribution.  

MODL is also used for grouping categorical variables, following a simple idea, which if the final 

discretization “interval” number is smaller than variable’s possible value number, we can group the 
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categories in the same “interval” into one. Finally, MODL is capable to calculate both continue and 

categorical variables similarity. 

5.3.2 Change detection proposition 

Our proposition is inspired by Alexis Bondu’s article “A Supervised Approach for Change Detection in 

Data Streams” (Alexis Bondu M. B., 2011). His proposition uses two time windows containing 

historical examples labeled “Class 1” and the most recent examples labeled “Class 2”. The detector 

discriminates on each attribute with MODL method. MODL gives a positive value when there is a 

significant difference in distribution from the two classes. And then it uses the Gain(model) as a 

criterion for detection reliability. 

His proposition fits our aim partially by introducing MODL discretization method to describe concept 

drifts automatically on instance attributes’ distribution from two time windows. 

The MODL drift detection based on incoming instance variable distribution change is proved useful. 

However, it becomes more and more complicated. The number of instance attributes increases as 

discretization on each dimension is required. In order to reduce detection complexity bought by 

MODL, the usage of performance indicators should be considered.  
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6 Our Proposition & Preliminary experiences  

6.1 Objective 

Our initial objective is automation for drift detection without any preliminary knowledge on 

performance indicators’ distribution for online learners. Absence of parameterization is a critical 

element for drift detection automation, because the phase of parameters adjustment is very 

complicated and expensive, and products uncertainty. We also hoped that it can be used with a 

numerous types of classifiers and be as much as possible independent from data stream properties. 

Our proposition is to use a performance indicator    as random variable for MODL method and detect 

concept drifts. 

 

 

  

 

 

 

 

  

6.2 Our hypothesis  

First of all we need to introduce several hypotheses for our method.  

The first hypothesis is that the incoming instances variables are iid when the source is stationary 

which is proved by the definition of “concept”. 

According to the PAC modeling, the classifier’s performance keeps getting better while more 

instances come from stationary source, and it obtains more information about the targeted data 

stream. When there is a change in the class-distribution of the examples, the actual model does not 

correspond any more to the actual distribution. There will be a difference in an incremental 

classifier’s prediction quality after a concept drift occurs, and would be reflected on indicators’ value, 

for example, the error-rate increases. In other words, if there is no influence on prediction quality 

after a (slight) concept drift, we have no motivation to handle it. Our basic idea of change detection in 

predictive learning is to monitor the quality of the process. So an online classifier’s performance 

evaluation indicator on supervised data stream can be considered as time series whose member 

   depends on other instances arriving before t as the classifier keeps learning on incoming examples 

and shows dependency on them.  

Our second hypothesis is that the prediction quality indicator follows a certain pattern. During a 

period when incoming data is stable, it can be reflected on distribution of value (See Annexes 1 and 

2). There will be a change in its behavior pattern and value distribution after a concept drift. In this 

case, the MODL method can be introduced to test similarity on indicator‘s value distribution from two 
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Label    

Instance    

Prediction

     

(       for 
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time-windows, one representing an older state as reference, the other representing current classifier 

prediction quality. The advantage of MODL is that it does not need any information from the indicator 

value distribution. However, we need to separate the classifier’s amelioration by incremental learning 

from changes caused by concept drift, which is impossible to get any knowledge only by observing 

simple MODL level value. For example, in case using error-rate, we consider there is no drift when 

error rate decreases over time.  

6.3 Classifier adaptation 

To valid our second hypothesis and figure out our method’s classifier compatibility, we looked into 

classifiers’ evolution on prediction quality when there is a concept drift. The classifiers tested are 

Naïve Bayes, Hoeffding Tree, SDG and Perceptron. The data stream is generated by SEA generator on 

MOA (Section 4.3.2). For the first three classifiers, there are 150000 instances and the generator 

changes its label decision function from “Function 1” to “Function 2” in the original article at 25,000 

within a window of 1000 instances. As Perceptron gets stable slowly, the experimental settings are 

different: there are 200000 instances and the same change happens at 100000. Figure 2 to Figure 5 

show accuracy on every 1000 instances over time for all of them. 

Temporal Accuracy on every 1000 instances over time on SEA data stream with concept drift 

 

Figure 2 Naive Bayes 
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Figure 3 Perceptron 

 

 

Figure 4 SGD 
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Figure 5 Hoeffding Tree 

From these experiences, we concluded that the magnitude of change on prediction quality depends 

not only on the difference between two data stream sources but also on classifier’s historical example 

forgetting mechanism. For classifiers which keep statistics on data for a long period of time such as 

Hoeffding Tree and Naïve Bayes classifier, the drift causes a significant decrease on prediction quality. 

The “recovery” takes more time than initial learning because it has to firstly efface the influence of 

the “old” source instances. For those with less memory on historical instances such as Perceptron and 

SGD, are less influenced by the drift and quickly adapt to the new source.  Since our method is based 

on supervised prediction result/quality monitoring, we were more interested in the first cases where 

there is real need for detecting in time concept drifts and evident abnormal behaviors (quality 

declines) on reaching drift. 

6.4 Time window strategy 

Time window technique takes arrival time as main measure for incoming examples. Because of 

concept change, the old observations become irrelevant to the current period and cause performance 

drop. The examples are deleted from the memory and totally forgotten according to some time 

criteria. Examples are stored in a FIFO data structure. At each step the learner induces a decision 

model using only the examples that are includes in the time window.  

The key difficulty is how to select an appropriate window size. Small windows can assure a fast 

adaptability in phases with concept changes. In more stable phases they affect the learner 

performance. Large windows produce good and stable learning results in stable phases but they can 

not react quickly to concept changes.  

Besides using fixed size window, many propose variable size window whose number of examples in 

the window is variable. They are often used in conjunction with a detection model. So the size of the 

window is decreased whenever the detection model signals drift and increasing otherwise.  

We use time windows for storing performance indicator(s) instead of examples’ attributes from the 

data stream. A two side-by-side equal-size sliding window strategy is employed whose size is Wc for 
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current window and Wr for reference window. As time passes, the instance prediction evaluation 

enters firstly the current window, after Wc instances, it moves into the reference window, and 

(Wr+Wc) after it is dumped by the detector and is no more in the memory. We chose this solution 

because for online learners, keeping the reference window fixed is not available. The performance is 

not stable (generally amelioration) and shows data dependency before reaching its error-rate’s 

“lower bound” at the beginning of prediction procedure. The detector is easy to be disturbed by their 

instable behavior that is why we need to update the reference window. The other reason is that we 

believe the classifier can treat “slight/tiny” but not negligible changes on incoming data stream by 

learning incrementally on new incoming instance or/and its own forgetting mechanism. In this case, 

the reference window can not be left too far from the current observation window. 

 

 

 

 

 

 

 

 

Another proposition once considered is to use the solution from Alexis Bondu’s article, a reference 

window which is larger than the current window. The reference window is fixed and the current 

window is sliding over time. But there are two modifications: first, to cross classifier’s learning period, 

initially let the reference window slide after the current window as the previous proposition; once the 

error rate stop increasing (the error rate in the current window equals to the one in the reference 

window), fix the reference window and the other one keeps sliding over time.  However, this 

proposition is not capable to localize concept drift. 

As in DDM we keep the global error p and its standard deviation s, and storing the minimal values. 

Our method starts detecting after (p+s>pmin+2smin) (See Annex 3) in order to separate prediction 

quality amelioration from declines probably caused by concept drift. Even if we used a part of the 

hypothesis of DDM, since the “bound” is rather loose, there should not be any problem for it to be 

the first filter for our proposition.  

Reference           Current  
WIndow              Window Time 

Data 
stream 
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Proposed algorithm 

Algorithm  
Parameters: W 
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf 

Wc={}, Wr={},LevelValue=0,OldLevelValue=0 
 
while (an instance         comes in){ 

n=n+1 
 Learner predicts on     
 Calculate     
  

if (the prediction is false ) { p=p+(1-p)/n} 
 else {p=p-p/n} 

s=          

  
 if (p+s<= pmin+ smin){ pmin=p   smin=s} 
  
 If(n<=W) Wr=Wr+{   } 
 Else if (n<=2W)  Wc=Wc+{   } 
 Else  
  Wr=Wr+{       }-{        } 
  Wc=Wc+{   }-{       } 
 
 If (p+s>pmin+2smin&& Wr and Wc are full){ 
  Contingency Table= 

value\class Wr Wc 

   

   

  LevelValue=Level.group(Contingency Table) or 
  LevelValue=Level.discretize(Contingency Table) 

 
If(LevelValue> 0){ 
 Drift detected 
} 
Else Suspect drift detected(Warning) 

 } 
                 If no drift detected : Stationary state   
} 
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6.5 Choice of performance indicator  

All a proper performance indicator for our method has to be chosen and must satisfy conditions 

below: 

- We can easily evaluate the learner’s performance for the whole window time interval, so that it’s 

possible to distingue changes caused by learning procedure and ones caused by concept drifts. 

- Within small time window, we can get enough number of values for the MODL method.  

6.5.1  “Right  prediction”   

Our first suggestion is inspired by DDM /EDDM method, which introduces a Boolean indicator: true if 

the prediction is correct; false otherwise. According to our hypothesis, it approaches to an iid random 

variable. We can easily get enough samples whose number is equal to the number of instances with a 

small window size. The learner’s prediction improvement can be decided by comparing the error rate 

of each window.  

6.5.2 Global error rate  

Our second choice of indicator is global error rate (the p from DDM and EDDM). This indicator is very 

smooth (See Annexes 4 and 5) so that we do not need anymore the warning level and it is possible 

that a reference window larger than the current one would be more effective.  

6.5.3 Score for a target class 

Another indicator produced each time an instance arrives is the score/vote for each prediction class, 

which could be P(Y|X) for Naïve Bayes classifier, wx+b for Perceptron, etc. On MOA, these votes are 

provided by all classifiers. As our proposition monitors only one indicator, and the number of scores 

equals to the number of prediction classes for an instance, a target class must be chosen. The 

advantage of this indicator is that it reflects not only to instances’ class distribution (higher the score 

is, more probably it is that the instance will be classified in the targeted class), but also the classifier’s 

performance evolution (when the portion between classes is the same and there is a change in target 

class score).  



7 Test  

7.1 Test Protocol  

Test protocols for learners handling concept drift have to look in two dimensions. First the classifier 

must have good performance in stationary phase which means little false positive drift alarm. Then its 

drift detection ability, indicated by number of false negative and detection delay, should be 

evaluated. We evaluated and discussed first the classifier’s behavior and performance in the 

stationary case and then in the non stationary one. Moreover, we introduced a global evaluation by 

observing classifier’s overall performance on dataset with concept drifts.  

Data source 

All datasets introduced here contain 100,000 instances. The stationary datasets used were generated 

by SEA generator’s Function 1 and LED generator with 10% of noise.  

The datasets with sudden drift were generated by STAGGER and SEA from MOA with a single drift at 

t=50000 whose width equals to 1000. As the drift change position and the change rate are known, 

drift detection is correct if it is sent in the drift/change window, the interval (drift position –drift 

window size, drift position + drift window size). The criterion to observe the precision of our detector 

is the rate of correct drift detections which equals to number of correct detection divided by total 

detection number. 

Correct Detection Rate= detection number over change window/ total detection number 

We calculated the rate but not only right or false detection number because a good change detector 

need to balance the sensibility of changes and the robustness to noises and classifier’s instability. We 

supposed that performance of our algorithm would get better if the reference window size increases. 

We also compared the final accuracy to observe contribution of drift detection.  

Dataset used with gradual drift was generated by MOA’s rotating hyperplane generator, as it is 

difficult to identify a drift position; we only looked at the total accuracy. Higher the accuracy gets 

more the classification benefits from drift detection.    

Classifiers 

The classifiers used in our experiments are Naïve Bayes and Perceptron supposed to fit our drift 

detection strategy for handling concept drifts. 

Drift detection handling 

If a warning is sent, the classifier starts to store instances. If the drift detection is confirmed, the 

classifier and the detector are initialized and the classifier starts learning first of all from these 

instances. If detection is directly launched, the classifier and the detector are initialized and the 

classifier starts learning from new incoming instances. 
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Parameters estimation  

Parameters (reference and current window sizes) used are shown in table below. 

Reference window 
size (Wr) 

Current window size 
(Wc) 

50 50 

100 50 

450 50 

100 100 

200 100 

Alternative methods 

The alternative method is DDM, which is based on classifier’s performance monitoring. 

  



7.2 “Right  prediction”   

Without drift 

Classifier Naïve Bayes Perceptron 

  LED  SEA LED  SEA 

Wr Wc Number of 
false 
detections 

Accuracy Number of 
suspect 
drifts  

Number of 
false 
detections 

Accuracy Number of 
suspect 
drifts 

Number of 
false 
detections 

Accuracy Number 
of 
suspect 
drifts 

Number of 
false 
detections 

Accuracy Number 
of 
suspect 
drifts 

50 50 0 0.73949 183 0 0.88139 16 0 0.72876 0 0 0.82322 215 

100 50 0 0.73949 183 0 0.88139 16 0 0.72877 0 0 0.8161 30 

450 50 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.82308 102 

100 100 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.82308 102 

200 100 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.818 35 

DDM 0   0   0   0   
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Sudden drift  

Classifier Naive Bayes Perceptron 

Detector Correct detection 
number/ number of 
detections 

Accuracy Number of 
suspect drifts 

Correct detection number/ 
number of detections 

Accuracy Number of suspect drifts 

Wr Wc SEA STAGGER SEA STAGGER SEA STAGGE
R 

SEA STAGGER SEA STAGGER SEA STAGGER 

50 50 0/2 0/1 0.94376 0.77973 0 46182 0/0 0/11 0.91952 0.8495 16 0 

100 50 0/3 0/1 0.94772 0.9105 0 17197 0/0 0/1 0.92417 0.85503 87 12211 

450 50 0/1 0/0 0.91645 0.7599 49706 51169 0/0 0/0 0.92576 0.85481 38 50907 

100 100 0/1 0/1 0.92717 0.91035 0 17223 0/0 0/3 0.92703 0.85472 73 0 

200 100 0/0 0/1 0.91629 0.91046 49592 17201 0/0 0/2 0.92748 0.85458 44 0 

DDM 0/2 6/6 0.94743 0.99699   0/0 4/4 0.92379 0.8717   

Gradual drift  

Classifier Naive Bayes Perceptron 

  Accuracy Number of 
detections 

Number of 
suspect drifts 

Accuracy Number of 
detections 

Number of 
suspect drifts 

Wr Wc Rotating hyperplane Rotating hyperplane 

50 50 0.84235 4 0 0.89731 5 0 

100 50 0.83411 5 0 0.89992 8 0 

450 50 0.86167 5 0 0.9048 2 0 

100 100 0.84731 2 0 0.90555 4 0 

200 100 0.82785 3 17272 0.90396 3 0 

DDM 0.90177 34  0.90501 7  

 

  



Although there was not detection on stationary datasets, it did not produce an acceptable correct 

detection rate on sudden drift datasets. When the window sizes are rather small (50/50, 100/50), 

there were detections as soon as the DDM criterion passes its threshold, meaning that our method is 

too sensitive to noise. On the contrary, when windows are large, there was few detection and we lost 

a lot on accuracy.  

To figure out the problem, we plotted the difference in error rate between the two windows 

mentioned in our proposed algorithm applied on SEA sudden drift dataset, as MODL level value, when 

both windows sizes are fixed, is related to error rate change between them.  We noticed that there 

was a very evident drop around the change point in accuracy for every 1000 examples. However, it 

showed only a slight increase in average of error rate between two windows in our algorithm during 

the drift interval. It was hard to figure out the change point among the other peaks. In order to leave 

out noise and rapid changes, a smoothing method would be useful, but would require supplemental 

parameters. 
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Figure 6 Accuracy (on percentage) on SEA sudden drift dataset with Naïve Bayes classifier 

 

 

Figure 7 Difference in error rate between two windows on SEA sudden drift dataset with Naïve Bayes classifier 

 

  

Change point 
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7.3 Global error rate  

Without drift 

Classifier Naïve Bayes Perceptron 

Detector Number of false detections Number of false detections 

Wr Wc LED SEA LED SEA 

50 50 1 0 0 0 

100 50 1 0 0 2 

450 50 1 0 0 0 

100 100 1 0 0 10 

200 100 1 0 0 0 

DDM 0 0 0 0 

Sudden drift  

Classifier Naive Bayes Perceptron 

Detector Correct detection 
number/Total 
detection number 

Accuracy Correct detection 
number/Total 
detection number 

Accuracy 

Wr Wc SEA STAGGER SEA STAG
GER 

SEA STAGG
ER 

SEA STAGGER 

50 50 1/4 2/4 0.94729 0.996
62 

0/0 7/7 0.92845 0.87133 

100 50 1/4 2/4 0.94729 0.996
62 

0/5 1/6 0.92416 0.87143 

450 50 1/4 2/3 0.94729 0.996
9 

0/0 4/10 0.92397 0.87089 

100 100 1/4 2/4 0.94729 0.996
62 

0/4 4/4 0.92675 0.87151 

200 100 1/4 2/4 0.94729 0.996
58 

0/0 4/4 0.92691 0.87141 

DDM 0/2 6/6 0.94743 0.996
99 

0/0 4/4 0.92379 0.8717 

Gradual drift  

Classifier Naive Bayes Perceptron 

Dataset Rotating hyperplane Rotating hyperplane 

Wr Wc Accuracy Detection 
number 

Accuracy Detection 
number 

50 50 0.904 42 0.90332 10 

100 50 0.90367 43 0.90345 10 

450 50 0.90427 33 0.90127 11 

100 100 0.90367 42 0.90254 13 

200 100 0.9028 46 0.90135 14 

DDM 0.90177 34 0.90501 7 



 

37 

 

Figure 8 Distribution of value p in two windows when data stream is stationary 

 

We got rather good results on stationary dataset using our method, mainly because our first test on 

DDM criterion filtered a lot of noises. The incremental global accuracy/ error rate moves more and 

more slightly as number of instances increases. It caused MODL method to focus on difference in 

distribution from tiny value interval (in our case between 0.83 and 0.85 for accuracy) comparing with 

their absolute values (Figure 9).  MODL noticed slight changes and then our algorithm became too 

sensitive. Since detections were alarmed, the classifier was reinitialized and the detector faced the 

same situation again, so false drift detections frequently appeared. That is why there were still several 

false detections and we got much more detections on gradually changing dataset. 

It seems that large window sizes produce less detection alarms. It takes more instances to fill both 

windows. There is not an evident difference between different window sizes used for our method.  
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As shown in Figure 9, this criterion reacted to concept drift so slowly for the previous SEA dataset with 

drift. In this case, our method monitors evaluation of global incremental error rate as indicator; the 

delay is more significant than DDM. But the difference in accuracy between tested and alternative 

detectors is almost negligible, indicating that it is not MODL discretization that caused the delay.   

 

Figure 9 Global/ incremental error rate SEA without drift detection 
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7.4 Score for a target class  

Without drift 

Classifier Naïve Bayes Perceptron 

  Number of false detections Number of false detections 

Wr Wc LED SEA LED SEA 

50 50 2 0 0 1 

100 50 0 0 0 1 

450 50 0 0 0 0 

100 100 0 0 0 9 

200 100 0 0 0 0 

DDM 0 0 0 0 

 Sudden drift  

Classifier Naive Bayes Perceptron 

Detector Correct 
detection 
number/Total 
detection 
number 

Accuracy Correct detection 
number/Total 
detection number 

Accuracy 

Wr Wc SEA STAG
GER 

SEA STAG
GER 

SEA STAGG
ER 

SEA STAGGER 

50 50 1/46 3/5 0.94702 0.997
22 

0/0 6/6 0.92408 0.87153 

100 50 0/15 5/7 0.94535 0.997
51 

0/0 10/10 0.92484 0.87133 

450 50 0/6 3/3 0.94682 0.997
43 

0/0 3/3 0.92009 0.87172 

100 100 1/30 5/7 0.94687 0.997
27 

0/0 3/3 0.92395 0.87165 

200 100 0/7 5/7 0.94424 0.997
07 

0/0 3/3 0.92539 0.87163 

DDM 0/2 6/6 0.94743 0.996
99 

0/0 4/4 0.92379 0.8717 

Gradual drift  

Classifier Naive Bayes Perceptron 

 Accuracy Detection 
number  

Accuracy Detection 
number 

Wr Wc Rotating hyperplane Rotating hyperplane 

50 50 0.89764 100 0.90219 17 

100 50 0.88836 95 0.90373 10 

450 50 0.87093 26 0.9028 12 

100 100 0.8862 30 0.90264 13 

200 100 0.88977 53 0.90218 13 

DDM 0.90177 34 0.90501 7 
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We also got rather good results on stationary dataset using our method, mainly because our first  

filter on DDM criterion eliminates a lot of noises and just a few level values were calculated.  

 

Figure 10 MODL level value over time with detector (reference window size=50 ; current window size=50) and Naive Bayes 

classifier on SEA sudden drift dataset 

On the dataset with a sudden drift shown in Figure 10, our method still had problem on dealing with 

classifier’s instable state. It detected many false drifts at the beginning of the learning process. Even 

though the performance of the classifier becomes stable, the classifier’s structure inside and 

parameters are still changing, which influences method’s indicator value. 

On dataset with gradual drift, our method produced many unnecessary and badly positioned drift 

detections disturbing classifier’s learning process. The indicator is influenced by not only incoming 

instance’s properties but also parameters of the classifier (which are always changing over time in 

case of gradual drifts).  
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7.5 Conclusion 

On general, our method did not work better on detection than DDM method using the three 

indicators directly in our experiences. The “right prediction” indicator is too robust to changes; the 

second one, global incremental error rate, produced results almost the same as DDM’s; the third one 

score of a certain class is too variant which can not be treated by our first filter.  

Our method also showed an important dependency on dataset and classifier types. Classifiers keeping 

short example memory like Perceptron do not fit method’s hypothesis of stable performance state.  

And for example, in our experiences, MODL level detector worked much better on STAGGER dataset 

than SEA dataset with sudden drift.  
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8 Conclusion  

During this internship, firstly we briefly introduced our problem “concept drift” and studied several 

strategies and methods widely used to solve it. Then, we concentrated our research direction on 

method monitoring classifier’s prediction performance. Inspired by a method calculating MODL level 

on instances’ variable distribution change, we developed our method using MODL on two observation 

windows of different performance indicators. 

MODL is a good method for discretization and a measure to detect difference on distribution with no 

matter which kind of variable. However, in our case our indicator values are not variants. Considering 

the reaction time and detector’s complexity, the sample size is rather small. MODL is much more 

sensitive to noises. We had to use a preliminary filter which is the same as DDM method’s suspect 

drift detection, to reduce number of false alarms. Our method is too dependant to the DDM filter and 

few MODL level values were calculated. In the same time we lost our very first advantage that our 

method has not a hypothesis on indicator value’s distribution.  

Several propositions for future research: 

- Apply smoothing on indicator value or MODL level value 

- Use several different indicators at the same time 

- Use larger reference window size and do resume on the reference window then calculate the 

MODL level 

Personally, this internship is my first experience on research domain. I got deeper comprehension on 

machine learning especially on online/incremental classification. Concept detection is a very difficult 

problem where we met a lot of problems during my internship. And I have learnt a lot on getting over 

them and on research methodology, which will be useful for my future career.  
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10 Annexes 

10.1 Accuracy of incremental learner applied on source without drift  
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10.2 AUC of incremental learner applied on source without drift  
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10.3 DDM p+s of incremental SGD learner applied on source without drift  
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10.4 Global/incremental error rate  of incremental learner applied on source 

without drift  
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10.5 Error rate+its standard deviation  of incremental learner applied on 

source without drift  
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