

Détection de concept drift

Thèse de MASTER

Master Sciences, Technologies, Santé

Mention, Sciences et Technologies de l’Information et de la Communication

Spécialité, Systèmes Intelligents pour les Transports

Présentée et soutenue publiquement par :

Yunhui Hou

Le 13 Juillet 2012

À l’Université de Technologie de Compiègne.

Devant le jury :

 Bertrand Ducourthial, Professeur

 Philippe Bonnifait, Responsable de SIT

 Pierre Morizet, Responsable de master

Directeur de thèse : Vincent Lemaire

Stage effectué à Orange Labs, Lannion

2

3

Acknowledgement

I would like to thank all people who worked with me during my internship at Orange Labs, especially

my supervisor Vincent Lemaire for inspiration and guide on methodology, and Christophe Salperwyck

for helping me implementing our method on MOA.

4

Abstract:
Concept drift describes changes in statistical properties of incoming data instances for online

classification over time. It causes a decrease in classifiers’ accuracy as time passes (non stationary

data stream). By monitoring online classifier’s performance measures over time, we would like to

detect concept drift using MODL discretization method on a mixture of two observation time

windows: one representing properties of stationary state, the other representing current state. If

MODL method is able to distingue measure values from the two windows, our method will detect a

concept drift, otherwise the targeted data stream is still stationary.

Résumé:
En classification, les propriétés statistiques de la variable cible, que le modèle essaie de prédire,

peuvent évaluer au cours du temps d'une manière imprévue. On parle alors de changement de

concept (Concept drift) pose des problèmes parce que les prédictions deviennent moins exactes au

fur et à mesure que le temps passe (données non stationnaires). En surveillant les mesures de

performance en ligne du classifier, on applique la méthode de discrétisation MODL sur le mélange de

deux fenêtres d’observation : l’une de référence représentant les propriétés historiques d’un état

stationnaire, l’autre pour celles actuelles supposées être différentes s’il y a un concept drift. Si la

discrétisation MODL réussit à discriminer/séparer les variables des deux fenêtres, notre méthode

détectera un concept drift, sinon on reste à l’état stationnaire.

5

Contents
1 Orange and France Telecom Group .. 8
2 Introduction of our problem .. 9

2.1 Concept drift ... 9
2.2 Strategies / categories .. 10
2.3 Incremental learning ... 11

2.3.1 Adaptive methods .. 11

2.3.2 Ensemble update strategies ... 11

2.3.3 Base online learners ... 11

3 Related Work .. 13

3.1 Concept Drift Detection .. 13

3.1.1 Classifier’s performance measures ... 13

3.1.2 Model properties .. 13

3.1.3 Data properties ... 13

4 Testing/validation methodology .. 15

4.1 Test Protocol ... 15
4.2 Indicators .. 15
4.3 Dataset .. 15

4.3.1 Concept drift generators .. 15

4.3.2 Synthetic data generators .. 16

4.3.3 Real world data ... 16

5 Inspiration... 18

5.1 Drift Detection Method (DDM) ... 18
5.2 Early drift detection method ... 20
5.3 Alexis Bondu’s Supervised approach for change detection proposition 21

5.3.1 MODL : a supervised discretization approach and a supervised grouping approach 21

5.3.2 Change detection proposition .. 22

6 Our Proposition & Preliminary experiences ... 23

6.1 Objective ... 23
6.2 Our hypothesis .. 23
6.3 Classifier adaptation ... 24
6.4 Time window strategy ... 26
6.5 Choice of performance indicator .. 29

6

6.5.1 “Right prediction” ... 29

6.5.2 Global error rate ... 29

6.5.3 Score for a target class ... 29

7 Test ... 30

7.1 Test Protocol ... 30
7.2 “Right prediction” ... 32
7.3 Global error rate ... 36
7.4 Score for a target class .. 39
7.5 Conclusion ... 41

8 Conclusion .. 42
9 Bibliography .. 43
10 Annexes .. 46

10.1 Accuracy of incremental learner applied on source without drift .. 46
10.2 AUC of incremental learner applied on source without drift ... 48
10.3 DDM p+s of incremental SGD learner applied on source without drift 50
10.4 Global/incremental error rate of incremental learner applied on source without drift 52
10.5 Error rate+its standard deviation of incremental learner applied on source without drift . 54

7

Notations

 data generating source

 probability distribution

 size of dataset

 training data set size

 class labels

 attributes of ith instance in memory

 attributes of instance coming at time t

 class label/ attribute of

W number of “recent” examples (time window size)

 set of indexes of all available instances in memory

 estimated label

 probability of misclassifiying of error rate at time t

 standard deviation of error rate at time t

8

1 Orange and France Telecom Group

France Telecom-Orange is one of the world’s leading telecommunications operators with 171,000

employees worldwide, including 105,000 employees in France, and sales of 10 billion Euros in the first

three months of 2012. Present in 33 countries, the group had a customer base of 225 million

customers at 31 March 2012, including 181 million customers under the Orange brand, the Group's

single brand for internet, television and mobile services in the majority of countries where the

company operates. Orange is one of the main European operators for mobile and broadband internet

services and, under the brand Orange Business Services, is one of the world leaders in providing

telecommunication services to multinational companies. (http://www.orange.com/en/group)

9

2 Introduction of our problem

2.1 Concept drift

Concept drift refers to a non stationary machine learning problem over time. A sequence of instances

is observed, one instance at a time, not necessarily in equal spaced-time intervals. is a vector

in p-dimensional feature space observed at time t and its corresponding label. The

concept or data source is defined as a set of prior probabilities of classes and class-conditional

probability density functions.

There is a concept drift if for any two time points and , . In another way, a concept drift

indicates changes in the posterior distributions of data .

Assuming that the concept of a sequence of instance changes from to , we call a drift a sudden

drift, if at time t, is suddenly replaced by .

Instead of a sudden change which means that the source is switched during a very short period of

time after the change point t, gradual drift refers to a change with a period both sources and

are active. As time passes, the probability of sampling from source decreases, probability of

sampling from source increases until is completely replaced by . There is another type of

gradual drift called incremental or stepwise drift. With more than two sources, the difference

between the sources is very small, thus the drift is noticed only when looking at a longer time period.

Reoccurring context means that previously active concept reappears after some time. It is not

certainly periodic. So there is not any predictive information on when the source will reappear. In

Figure 1, we can see how these changes happen in the mean of a dataset.

Figure 1 Concept Changes in the mean of a sequential data (Žliobaite, 2010)

10

2.2 Strategies / categories

Strategies for handling concept drift can be presented as table below in two dimensions.

 Trigger-based Evolving

Single classifier Detectors(variable time

windows)

Forgetting(fixed time windows,

instance weighting)

Ensemble Contextual (dynamic

integration, meta learning)

Dynamic ensemble(adaptive

combination rules)

Trigger-based means that there is a signal which indicates a need for model change. The trigger

directly influences how the new model should be constructed. Most often change detectors are used

as triggers.

Evolving methods, on the contrary, do not maintain an explicit link between data progress and model

construction, and usually do not detect changes. Evolving learners adapt at every step and it often

corresponds to a forgetting mechanism. There is not explicit change detection. They provide neither

indication about change points nor dynamics of the process generation data.

Ensemble algorithm consists of a set of different single classifiers whose decisions are aggregated by a

voting rule or given by a properly chosen classifier according to the observed incoming data

(contextual). The decision produced by the former strategy is usually more accurate than the decision

given by a single classifier. It is necessary to diversify ensemble members from each other.

11

2.3 Incremental learning

2.3.1 Adaptive methods

The adaption model is characterized by changing the decision model to adapt to the most recent

examples. We can overview this part in two dimensions: “when” and “how” the adaption is applied.

“Blind methods” or evolving methods reconfigure the learner at regular intervals without considering

whether changes have really occurred. Another type of adaptive models is “informed method” usually

used on trigger-based classifiers. They only change the decision model after a change is detected.

The adaptivity can be achieved by adjusting training set with forgetting mechanism which punishes

irrelevant data. Window technique with fixed or variable size is widely used. With change detector,

the window is cut at the change point and the data before the change alarm are deleted. “Instance

weighting” also represents the forgetting mechanism by giving each stored instance a time related

similarity measure(weight) which signifies its importance on decision making procedure. Another

group of methods use instance selection. The incoming testing instances (unlabeled) are inspected.

Based on the similarity between the testing instance and profiled partitions of the training set, one is

chosen and used for building the classifier for prediction. After updating training set to concept drift,

it is necessary to retrain the learner. For some learners such as Naïve Bayes and SVM, reconstruction

of the whole decision model is required. On the contrary, for granular decision models like decision

rules and decision trees, we just need to rebuild part of the decision model or adjust decision model’s

parameters by resuming recent data.

2.3.2 Ensemble update strategies

For classifier ensembles, adaptive method is more flexible, because it is able to adjust fusion rules

(e.g. base learner weights), update training data, delete or add ensemble members, and modify

ensemble structure(decision trees).

2.3.3 Base online learners

2.3.3.1 VFDT, Hoeffding Tree

Hoeffding Tree (Pedro Domingos, 2000) is an incremental decision tree algorithm using Hoeffding

bound as split decision function, which only a small subset of incoming instances passing through is

needed to find the best split.

2.3.3.2 Naive Bayes

Naïve Bayes classifier (Langley, 1992) is a conditional probabilistic model classifier based on Bayes’

theorem and assuming that variables are independent.

According to Bayes’ theorem, the conditional probability for an instance to be classified into class Y

given its variable values becomes

12

Supposing that all these variables are independent, the decision/prediction of the classifier can be

written as

2.3.3.3 Perceptron

Perceptron (Rosenblatt, 1957) is a linear binary classifier which can be regarded as a single layer

artificial neural network, whose decision model is :

Where x is the input variable, w is a vector of real-valued weight, wx is the dot product, and b is the

“bias”.

2.3.3.4 SGD (Stochastic Gradient Descent)

Stochastic Gradient Descent (SGD) (Bottou, 2004) classifier uses linear model whose parameters are

estimated by gradient descent optimization method for minimizing its object function, usually least

squares or least mean squares.

13

3 Related Work

3.1 Concept Drift Detection

Change detectors monitor real-time measures and send alarms as soon as drifts are detected. A good

test reduces detection delay (i.e., time needed to detect the change) and minimizes both false

positive and negative detection numbers. Multiple or hierarchical detectors are sometimes applied to

deal with different types of concept drifts and reduce false positive number. Measures monitored are

usually classifier’s performance indicators or data properties in order to indicate the change point in

time.

3.1.1 Classifier’s performance measures

When there is a change in examples class-distribution, classifier’s actual model does not correspond

to the actual distribution any more. Meanwhile, its error-rate increases. The basic idea of change

detection in predictive learning is monitoring its prediction quality.

FLORA family algorithms (Kubat., 1996) monitor accuracy and model size. It includes a window

adjustment heuristic for a rule-based classifier. Flora3 deals with recurring concepts. (Klinkenberg,

1998) proposes to monitor performance indicators (accuracy, recall and precision over time), and

compare them to a confidence interval of standard sample errors for a moving average value using

the last M batches for each particular indicator.

Statistical Test of Equal Proportions (STEPD) (Kyosuke Nishida, 2007) is based on the assumption that

classifier’s accuracy on recent W examples will be equal to the overall accuracy from the beginning of

the learning if the target concept is stationary; a significant decrease of recent accuracy suggests that

the concept is changing. It calculates a measure T which can be regarded equivalent to chi-square test

with Yates’ continuity correction and compares it to the percentile of the standard normal

distribution to obtain the observed significance level, P. It stores examples in short term memory

while ; rebuilds the classifier from the stored examples and resets all variables if .

Stored examples are removed if .

3.1.2 Model properties

Model evaluation can be monitored to detect concept drift using indicators such as model complexity

and memory size. For decision trees, it could be tree size, attribute-class statistics (Bifet, 2009), or

misclassification number for a node (Gama J. R., 2003).

3.1.3 Data properties

Another assumption is that after a concept drift occurs, current incoming data distribution differs

from the one before. So we just need to monitor the data distribution variance using statistical

methods. For numeric sequences, we can apply a sequential analysis. CUSUM test (Page, 1954)

detects significant increase or decrease in successive observation of a random variable. GMA

(geometric moving average test) (Roberts., 2000) is an alternative of CUSUM test. SPRT (Sequential

probability ration test) (Wald, 1947) calculates the cumulative sum of the log-likelihood ratio as new

data arrive with specific sequential hypothesis. For example, we have two hypotheses

 represented by their probability distribution functions . As the ith instance arrives, we

calculate the cumulative sum of the log-likelihood ratio.

14

Then compare the sum with two thresholds a, b decided beforehand.

The changes are detected by the passage from one hypothesis to the other.

Another option is to monitor distributions on two or multiple different time-windows.

Mann-Kendall test evaluates the signs of observed values differences.

Density estimation on data analysis (Alexis Bondu B. G.-L., 2010) summarizes the input data stream

by micro-clustering algorithm “Denstream”, and estimates the underlying distribution of incoming

data stream periodically using a variant of Parzen window. It sends an alarm if the distance between

the current estimated distribution and a reference distribution evaluated by the Kullback-Leibler

divergence is significant. Thus there is a diagnostic evaluating the cause of concept drift. ACED

(Nishida, 2005) calculates , the predictive accuracy of the online classifier for recent W examples,

and the confidence interval for whose lower endpoint is

. . When

 , it declares

a concept drift and initializes the classifier after 2W examples arrived. It is able to detect concept drift

quickly when W is small; however, such small window size often causes misdetection.

ADWIN change detector keeps a sliding time-window with the most recent examples divided into 2

sub-windows. When these “large enough” sub windows exhibit “distinct enough” averages, we can

conclude that there is a concept change and the older portion of the window is dropped. Statistical

test on different distributions is to check whether the observed average in both sub windows is more

than the threshold.

Test on p-value (Anton Dries, 2009) assumes that a small p-value suggests that a concept drift is

likely. The system signals the discovery of a new concept if a peak in the sequence of p-values is

detected.

15

4 Testing/validation methodology

4.1 Test Protocol

For offline classifiers:

Holdout evaluation: Holdout an independent test set. Apply the current decision model to the test

set at regular time intervals or set of examples. The loss estimated in the holdout is an unbiased

estimator.

For online classifiers:

Interleave Test-Then-Train: Each individual example is used to test the model before it is used for

training, and from this the accuracy is incrementally updated. Its advantage is that the model is

always being tested on unseen examples and no holdout set is needed so that available data are fully

used. It also produces smooth plot accuracy over time.

4.2 Indicators

A good learner handling concept drift should have high accuracy, low computational cost (memory

space and operational time) and fast reliable change detection.

Change detection performance could be evaluated on:

- False positives (FP) counts number of detections that a test sends in the sequence when

there is not. The ideal drift detection algorithm should not be too much influenced by noise.

- False negatives (FN) counts the times that a test does not detect a change when there is

one.

- Recognition delay (RD) measures delay time for change detection.

- Computational time (CT) provides execution time needed to perform the test detector on a

reference platform.

- Memory occupation is the size of memory occupied for storing examples and model

parameters over time.

- Ram-Hour (Albert Bifet G. H., 2010) counts cost per hour and memory used at the same

time. Every GB of RAM deployed for 1 hour equals to 1 RAM-Hour. It is a measure on

resource used by classifiers during learning procedure. It fits practically pricing strategies for

main cloud computing service providers, such as Amazon EC2 and Microsoft Azure.

4.3 Dataset

4.3.1 Concept drift generators

A general way to generate concept drifts is to mix data with different characteristics into one stream

and modify its composition to create various types of concept drifts.

In order to test concept drift detectors, we can use a single labeled dataset. We regroup all examples

by label. Each new dataset contains all the attributes except the class label column. They are assumed

to be generated by different concept. We usually use two or three classes having the most members.

It’s easy for pre-treatment but not possible to evaluate classifiers’ performance. When several

16

datasets are available, we concatenate the lists of attributes from all of them, and the number of

classes is set to the maximum number of classes to fit all dataset.

To create sudden drift, we just need to use one dataset before the breakpoint and switch to another

after it. Gradual drifts are more complicated. (Bifet, 2009) suggests to join two datasets using the

sigmoid function by modifying their proportion on the new data stream gradually. The function can be

parameterized by the location of change point and the length of change interval. Reoccurring drifts

are achieved by repeating this procedure to replace the current dataset by the “previous” one. It’s

also possible to introduce multiple concepts sequentially into our test data stream. This method

builds a labeled data stream which is available for evaluating classifiers and can be controlled so that

it’s possible to create divers situations. However, joining datasets from sources with little nature alike

may lead to insensible change detectors, as it’s not the common case in reality.

4.3.2 Synthetic data generators

MOA (Massive Online Analysis) contains a serial of artificial stream generators as SEA concepts,

STAGGER, rotating hyperplane, random tree, and random radius based functions. (Albert Bifet G. H.,

2011)

- SEA Concept generator (Kim, 2001) contains abrupt drift and generates points with 3

attributes between 0 and 10 where only the first 2 attributes are relevant. These points are

divided into 4 blocks with different concepts by giving each block a threshold value which is

the upper bound to the sum of the first two attributes.

- STAGGER (Granger, 1986) is a collection of elements, where each individual element is a

Boolean function of attribute-valued pairs represented by a disjunct of conjuncts.

- Rotating hyperplane (G. Hulten, 2001) uses a hyperplane in d-dimension as the one in SVM

and determines the sign of labels. It’s useful for simulating time-changing concepts, because

we can change the orientation and position of the hyperplane in a smooth manner by

changing the relative size of weights.

- Random RBF (Bifet, 2009) creates numerical dataset whose classes are represented in

hyperphere of examples with random centers. Population of each class depends on its

weight. The probability that a point is distributed in a position is calculated by a radical basis

function on its distance from its centers.

- LED (Leo Breiman, 1984) (LED Display Domain Data Set) is composed of 7 Boolean attributes

which are predicted LED displays (the light is on or not) and 10 concepts. Each attribute value

has the 10% of its value inverted. It has an optimal Bayes classification rate of 74%.

- Waveform (Waveform Database Generator (Version 2) DataSet) (Leo Breiman, 1984)

produces 40 attributes including noise, and the latter 19 attributes are all noise attributes

with mean 0 and variance 1. It differentiates between 3 different classes of waves, each of

which is generated from a combination of two or three base waves.

- Function generator (Rakesh Agrawal, 1993) produces a stream containing 9 attributes, 6

numeric and 3 categorical, describing hypothetical loan applications. The classes (whether

the loan should be approved) are presented in a Boolean label defined by 10 functions.

4.3.3 Real world data

In many articles, the UCI Machine Learning Repository is cited as real world data source. Here we

introduce several most used datasets on concept drift handling.

17

- Forest Cover type dataset (Covertype) contains 581012 instances of 54 categorical and

integer attributes describing wildness areas’ condition collected from US Forest Service

(USFS) Region 2 Resource Information System (RIS) and US Geological Survey (USGS) and

USFS data. The class set consists of is 7 forest cover types.

- Poker-Hand dataset (Poker Hand): Each record is an example of a hand consisting of five

playing cards drawn from a standard deck of 52. Each card is described using two attributes

(suit and rank), for a total of 10 predictive attributes. There is one Class attribute that

describes the "Poker Hand". The order of cards is important, which is why there are 480

possible Royal Flush hands as compared to 4.

- Electricity dataset (Harries, 1999): This data was collected from the Australian New South

Wales Electricity Market. It contains 45312 instances drawn from 7 May 1996 to 5 December

1998 with one instance for each half hour. The class label (DOWN or UP) identifies the

change of the price related to a moving average of the last 24 hours. The attributes are time,

electricity demands and scheduled power transfer between states, all of which are numeric

values.

18

5 Inspiration

5.1 Drift Detection Method (DDM)

(Gama J. M., 2004) introduces Drift Detection Method (DDM) monitoring incremental global error

rate of an online learner. The error rate at time t is , probability of misclassifying;

And its standard deviation is calculated by

It is assumed that decreases as time advances if the target concept keeps stationary; otherwise,

significant increase of is observed.

The values of and are stored when reaches its minimum. If the performance indictor for

each prediction equals to 0, if the prediction is false; 1, if it’s correct. Then after reaching the

classifier’s stable state on stationary data stream, follows Bernoulli distribution with p= . So

the sum of follows Gaussian distribution with pmin as mean and smin as standard deviation. This

hypothesis can be available at least if there are a large number of examples (n>30 by default

proposed by the authors). Two thresholds are fixed by estimating p-value. New examples are kept in

short term memory while . The concept drift is detected and we need to

rebuild the classifier from the stored examples and reset all variables if .

This method performs well for detecting sudden changes. But it has difficulties detecting gradual

changes. The hypothesis is not available because theoretically is not identically independently

distributed, because for incremental learners keeps learning even if incoming instances are iid, we

can’t say its performance is not temporal /dynamic.

19

DDM Algorithm

Parameters: MinNbForDetection=30 (default value)
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf
while (an instance comes in){

n=n+1
 Learner predicts on

if (the prediction is false) {
 p=p+(1-p)/n
}

 else {
 p=p-p/n
 }

s=

 if (p+s<= pmin+ smin){ pmin=p smin=s}
 if (n>MinNbForDetection){
 ddm=

If(ddm 3)){
 Drift detected
}

 Else if(ddm 2) {

 Warning sent
}

 }
 If neither drift nor warning : stationary state
}

After observing figures of Annex 3, we notice that DDM does not work well with learners like

Hoeffding Tree, which intern modification while learning is not gradual, and perceptron, which only

keeps short term memory.

20

5.2 Early drift detection method

EDDM (early drift detection method) (Baena-Garcia, 2006) monitors the time interval (distance)

between two occurrences of classification errors. The assumption is that any significant decrease in

the distance suggests changes on concept. It calculates the average distance between two errors

and its standard ; keeps in memory values of and when reaches its maximum;

stores examples in short-term memory while

 ; rebuilds the classifier from the stored

examples and resets all variables if

 . The detection starts after 30 errors have

occurred. The method performs well for gradual changes; but it is not good at detection drift in noisy

examples.

EDDM Algorithm

Parameters: MinNbForDetection=30 (default value), ,
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf
while (an instance comes in){

n=n+1
 Learner predicts on

if (the prediction is false) {
 p=p+(1-p)/n
}

 else {
 p=p-p/n
 }

s=

 if (p+s<= pmin+ smin){ pmin=p smin=s}

 if (n>MinNbForDetection){

 eddm=

If()) Drift detected
 Else if() Warning sent

}
 If neither drift nor warning : Stationary state
}

21

5.3 Alexis Bondu’s Supervised approach for change detection proposition

5.3.1 MODL : a supervised discretization approach and a supervised grouping

approach

In this section we discuss the MODL method for discretization on continuous attributes and grouping

on categorical variables.

The MODL method is based on a Bayesian approach of the discretization problem which means that

the optimized method is obtained by maximizing the probability P(Model|Data) of the model given

data. According to Bayesian rule and considering that the probability P(Data) is constant while the

model varies, we just need to maximize P(Model)P(Data|Model)

or minimize C(Model)=-[log(P(Model))+log(P(Data|Model)] .

The MODL model is defined by

- I: the number of intervals

- : the number of examples located in the interval i

-
: the number of examples labeled by the class j located in the interval i

Then the problem is transferred into a model selection problem. Then C(Model) becomes

where

The quality of the optimal MODL model, called Map (Maximum A Posteriori), is evaluated by

where is the null model which discretizes the variable into only one interval.

Gain (compression rate) is equal to 0 if the variable can not be discriminated, indicating that the

distributions of variables with different label is similar or the same. Otherwise, the Gain value is

strictly positive and increases as the difference in distribution becomes more and more significant.

Finally, the Gain can reach to 1, when the variable can be perfectly discriminated by the model and

indicates there’s no cross-over between the labels’ distribution.

In this way, the MODL discretization method becomes a univariate hypothesis test for similarity like

Chi2 test on distribution.

MODL is also used for grouping categorical variables, following a simple idea, which if the final

discretization “interval” number is smaller than variable’s possible value number, we can group the

22

categories in the same “interval” into one. Finally, MODL is capable to calculate both continue and

categorical variables similarity.

5.3.2 Change detection proposition

Our proposition is inspired by Alexis Bondu’s article “A Supervised Approach for Change Detection in

Data Streams” (Alexis Bondu M. B., 2011). His proposition uses two time windows containing

historical examples labeled “Class 1” and the most recent examples labeled “Class 2”. The detector

discriminates on each attribute with MODL method. MODL gives a positive value when there is a

significant difference in distribution from the two classes. And then it uses the Gain(model) as a

criterion for detection reliability.

His proposition fits our aim partially by introducing MODL discretization method to describe concept

drifts automatically on instance attributes’ distribution from two time windows.

The MODL drift detection based on incoming instance variable distribution change is proved useful.

However, it becomes more and more complicated. The number of instance attributes increases as

discretization on each dimension is required. In order to reduce detection complexity bought by

MODL, the usage of performance indicators should be considered.

23

6 Our Proposition & Preliminary experiences

6.1 Objective

Our initial objective is automation for drift detection without any preliminary knowledge on

performance indicators’ distribution for online learners. Absence of parameterization is a critical

element for drift detection automation, because the phase of parameters adjustment is very

complicated and expensive, and products uncertainty. We also hoped that it can be used with a

numerous types of classifiers and be as much as possible independent from data stream properties.

Our proposition is to use a performance indicator as random variable for MODL method and detect

concept drifts.

6.2 Our hypothesis

First of all we need to introduce several hypotheses for our method.

The first hypothesis is that the incoming instances variables are iid when the source is stationary

which is proved by the definition of “concept”.

According to the PAC modeling, the classifier’s performance keeps getting better while more

instances come from stationary source, and it obtains more information about the targeted data

stream. When there is a change in the class-distribution of the examples, the actual model does not

correspond any more to the actual distribution. There will be a difference in an incremental

classifier’s prediction quality after a concept drift occurs, and would be reflected on indicators’ value,

for example, the error-rate increases. In other words, if there is no influence on prediction quality

after a (slight) concept drift, we have no motivation to handle it. Our basic idea of change detection in

predictive learning is to monitor the quality of the process. So an online classifier’s performance

evaluation indicator on supervised data stream can be considered as time series whose member

 depends on other instances arriving before t as the classifier keeps learning on incoming examples

and shows dependency on them.

Our second hypothesis is that the prediction quality indicator follows a certain pattern. During a

period when incoming data is stable, it can be reflected on distribution of value (See Annexes 1 and

2). There will be a change in its behavior pattern and value distribution after a concept drift. In this

case, the MODL method can be introduced to test similarity on indicator‘s value distribution from two

Online Classifier Evaluator

Label

Instance

Prediction

(for

learning

Performance

indicator

24

time-windows, one representing an older state as reference, the other representing current classifier

prediction quality. The advantage of MODL is that it does not need any information from the indicator

value distribution. However, we need to separate the classifier’s amelioration by incremental learning

from changes caused by concept drift, which is impossible to get any knowledge only by observing

simple MODL level value. For example, in case using error-rate, we consider there is no drift when

error rate decreases over time.

6.3 Classifier adaptation

To valid our second hypothesis and figure out our method’s classifier compatibility, we looked into

classifiers’ evolution on prediction quality when there is a concept drift. The classifiers tested are

Naïve Bayes, Hoeffding Tree, SDG and Perceptron. The data stream is generated by SEA generator on

MOA (Section 4.3.2). For the first three classifiers, there are 150000 instances and the generator

changes its label decision function from “Function 1” to “Function 2” in the original article at 25,000

within a window of 1000 instances. As Perceptron gets stable slowly, the experimental settings are

different: there are 200000 instances and the same change happens at 100000. Figure 2 to Figure 5

show accuracy on every 1000 instances over time for all of them.

Temporal Accuracy on every 1000 instances over time on SEA data stream with concept drift

Figure 2 Naive Bayes

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

A
cc

u
ra

cy

Number of instances

Change point

25

Figure 3 Perceptron

Figure 4 SGD

60

65

70

75

80

85

90

95

100

0 50000 100000 150000 200000 250000

A
cc

u
ra

cy

Number of instances

Change point

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

A
cc

u
ra

cy

Number of instances

Change point

26

Figure 5 Hoeffding Tree

From these experiences, we concluded that the magnitude of change on prediction quality depends

not only on the difference between two data stream sources but also on classifier’s historical example

forgetting mechanism. For classifiers which keep statistics on data for a long period of time such as

Hoeffding Tree and Naïve Bayes classifier, the drift causes a significant decrease on prediction quality.

The “recovery” takes more time than initial learning because it has to firstly efface the influence of

the “old” source instances. For those with less memory on historical instances such as Perceptron and

SGD, are less influenced by the drift and quickly adapt to the new source. Since our method is based

on supervised prediction result/quality monitoring, we were more interested in the first cases where

there is real need for detecting in time concept drifts and evident abnormal behaviors (quality

declines) on reaching drift.

6.4 Time window strategy

Time window technique takes arrival time as main measure for incoming examples. Because of

concept change, the old observations become irrelevant to the current period and cause performance

drop. The examples are deleted from the memory and totally forgotten according to some time

criteria. Examples are stored in a FIFO data structure. At each step the learner induces a decision

model using only the examples that are includes in the time window.

The key difficulty is how to select an appropriate window size. Small windows can assure a fast

adaptability in phases with concept changes. In more stable phases they affect the learner

performance. Large windows produce good and stable learning results in stable phases but they can

not react quickly to concept changes.

Besides using fixed size window, many propose variable size window whose number of examples in

the window is variable. They are often used in conjunction with a detection model. So the size of the

window is decreased whenever the detection model signals drift and increasing otherwise.

We use time windows for storing performance indicator(s) instead of examples’ attributes from the

data stream. A two side-by-side equal-size sliding window strategy is employed whose size is Wc for

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

A
cc

u
ra

cy

Number of instances

Change point

27

current window and Wr for reference window. As time passes, the instance prediction evaluation

enters firstly the current window, after Wc instances, it moves into the reference window, and

(Wr+Wc) after it is dumped by the detector and is no more in the memory. We chose this solution

because for online learners, keeping the reference window fixed is not available. The performance is

not stable (generally amelioration) and shows data dependency before reaching its error-rate’s

“lower bound” at the beginning of prediction procedure. The detector is easy to be disturbed by their

instable behavior that is why we need to update the reference window. The other reason is that we

believe the classifier can treat “slight/tiny” but not negligible changes on incoming data stream by

learning incrementally on new incoming instance or/and its own forgetting mechanism. In this case,

the reference window can not be left too far from the current observation window.

Another proposition once considered is to use the solution from Alexis Bondu’s article, a reference

window which is larger than the current window. The reference window is fixed and the current

window is sliding over time. But there are two modifications: first, to cross classifier’s learning period,

initially let the reference window slide after the current window as the previous proposition; once the

error rate stop increasing (the error rate in the current window equals to the one in the reference

window), fix the reference window and the other one keeps sliding over time. However, this

proposition is not capable to localize concept drift.

As in DDM we keep the global error p and its standard deviation s, and storing the minimal values.

Our method starts detecting after (p+s>pmin+2smin) (See Annex 3) in order to separate prediction

quality amelioration from declines probably caused by concept drift. Even if we used a part of the

hypothesis of DDM, since the “bound” is rather loose, there should not be any problem for it to be

the first filter for our proposition.

Reference Current
WIndow Window Time

Data
stream

28

Proposed algorithm

Algorithm
Parameters: W
Initialize :p=1, n=0, s =1, pmin=inf, smin=inf

Wc={}, Wr={},LevelValue=0,OldLevelValue=0

while (an instance comes in){

n=n+1
 Learner predicts on
 Calculate

if (the prediction is false) { p=p+(1-p)/n}
 else {p=p-p/n}

s=

 if (p+s<= pmin+ smin){ pmin=p smin=s}

 If(n<=W) Wr=Wr+{ }
 Else if (n<=2W) Wc=Wc+{ }
 Else
 Wr=Wr+{ }-{ }
 Wc=Wc+{ }-{ }

 If (p+s>pmin+2smin&& Wr and Wc are full){
 Contingency Table=

value\class Wr Wc

 LevelValue=Level.group(Contingency Table) or
 LevelValue=Level.discretize(Contingency Table)

If(LevelValue> 0){
 Drift detected
}
Else Suspect drift detected(Warning)

 }
 If no drift detected : Stationary state
}

29

6.5 Choice of performance indicator

All a proper performance indicator for our method has to be chosen and must satisfy conditions

below:

- We can easily evaluate the learner’s performance for the whole window time interval, so that it’s

possible to distingue changes caused by learning procedure and ones caused by concept drifts.

- Within small time window, we can get enough number of values for the MODL method.

6.5.1 “Right prediction”

Our first suggestion is inspired by DDM /EDDM method, which introduces a Boolean indicator: true if

the prediction is correct; false otherwise. According to our hypothesis, it approaches to an iid random

variable. We can easily get enough samples whose number is equal to the number of instances with a

small window size. The learner’s prediction improvement can be decided by comparing the error rate

of each window.

6.5.2 Global error rate

Our second choice of indicator is global error rate (the p from DDM and EDDM). This indicator is very

smooth (See Annexes 4 and 5) so that we do not need anymore the warning level and it is possible

that a reference window larger than the current one would be more effective.

6.5.3 Score for a target class

Another indicator produced each time an instance arrives is the score/vote for each prediction class,

which could be P(Y|X) for Naïve Bayes classifier, wx+b for Perceptron, etc. On MOA, these votes are

provided by all classifiers. As our proposition monitors only one indicator, and the number of scores

equals to the number of prediction classes for an instance, a target class must be chosen. The

advantage of this indicator is that it reflects not only to instances’ class distribution (higher the score

is, more probably it is that the instance will be classified in the targeted class), but also the classifier’s

performance evolution (when the portion between classes is the same and there is a change in target

class score).

7 Test

7.1 Test Protocol

Test protocols for learners handling concept drift have to look in two dimensions. First the classifier

must have good performance in stationary phase which means little false positive drift alarm. Then its

drift detection ability, indicated by number of false negative and detection delay, should be

evaluated. We evaluated and discussed first the classifier’s behavior and performance in the

stationary case and then in the non stationary one. Moreover, we introduced a global evaluation by

observing classifier’s overall performance on dataset with concept drifts.

Data source

All datasets introduced here contain 100,000 instances. The stationary datasets used were generated

by SEA generator’s Function 1 and LED generator with 10% of noise.

The datasets with sudden drift were generated by STAGGER and SEA from MOA with a single drift at

t=50000 whose width equals to 1000. As the drift change position and the change rate are known,

drift detection is correct if it is sent in the drift/change window, the interval (drift position –drift

window size, drift position + drift window size). The criterion to observe the precision of our detector

is the rate of correct drift detections which equals to number of correct detection divided by total

detection number.

Correct Detection Rate= detection number over change window/ total detection number

We calculated the rate but not only right or false detection number because a good change detector

need to balance the sensibility of changes and the robustness to noises and classifier’s instability. We

supposed that performance of our algorithm would get better if the reference window size increases.

We also compared the final accuracy to observe contribution of drift detection.

Dataset used with gradual drift was generated by MOA’s rotating hyperplane generator, as it is

difficult to identify a drift position; we only looked at the total accuracy. Higher the accuracy gets

more the classification benefits from drift detection.

Classifiers

The classifiers used in our experiments are Naïve Bayes and Perceptron supposed to fit our drift

detection strategy for handling concept drifts.

Drift detection handling

If a warning is sent, the classifier starts to store instances. If the drift detection is confirmed, the

classifier and the detector are initialized and the classifier starts learning first of all from these

instances. If detection is directly launched, the classifier and the detector are initialized and the

classifier starts learning from new incoming instances.

31

Parameters estimation

Parameters (reference and current window sizes) used are shown in table below.

Reference window
size (Wr)

Current window size
(Wc)

50 50

100 50

450 50

100 100

200 100

Alternative methods

The alternative method is DDM, which is based on classifier’s performance monitoring.

7.2 “Right prediction”

Without drift

Classifier Naïve Bayes Perceptron

 LED SEA LED SEA

Wr Wc Number of
false
detections

Accuracy Number of
suspect
drifts

Number of
false
detections

Accuracy Number of
suspect
drifts

Number of
false
detections

Accuracy Number
of
suspect
drifts

Number of
false
detections

Accuracy Number
of
suspect
drifts

50 50 0 0.73949 183 0 0.88139 16 0 0.72876 0 0 0.82322 215

100 50 0 0.73949 183 0 0.88139 16 0 0.72877 0 0 0.8161 30

450 50 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.82308 102

100 100 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.82308 102

200 100 0 0.73949 183 0 0.88139 16 0 0.72873 0 0 0.818 35

DDM 0 0 0 0

 33

Sudden drift

Classifier Naive Bayes Perceptron

Detector Correct detection
number/ number of
detections

Accuracy Number of
suspect drifts

Correct detection number/
number of detections

Accuracy Number of suspect drifts

Wr Wc SEA STAGGER SEA STAGGER SEA STAGGE
R

SEA STAGGER SEA STAGGER SEA STAGGER

50 50 0/2 0/1 0.94376 0.77973 0 46182 0/0 0/11 0.91952 0.8495 16 0

100 50 0/3 0/1 0.94772 0.9105 0 17197 0/0 0/1 0.92417 0.85503 87 12211

450 50 0/1 0/0 0.91645 0.7599 49706 51169 0/0 0/0 0.92576 0.85481 38 50907

100 100 0/1 0/1 0.92717 0.91035 0 17223 0/0 0/3 0.92703 0.85472 73 0

200 100 0/0 0/1 0.91629 0.91046 49592 17201 0/0 0/2 0.92748 0.85458 44 0

DDM 0/2 6/6 0.94743 0.99699 0/0 4/4 0.92379 0.8717

Gradual drift

Classifier Naive Bayes Perceptron

 Accuracy Number of
detections

Number of
suspect drifts

Accuracy Number of
detections

Number of
suspect drifts

Wr Wc Rotating hyperplane Rotating hyperplane

50 50 0.84235 4 0 0.89731 5 0

100 50 0.83411 5 0 0.89992 8 0

450 50 0.86167 5 0 0.9048 2 0

100 100 0.84731 2 0 0.90555 4 0

200 100 0.82785 3 17272 0.90396 3 0

DDM 0.90177 34 0.90501 7

Although there was not detection on stationary datasets, it did not produce an acceptable correct

detection rate on sudden drift datasets. When the window sizes are rather small (50/50, 100/50),

there were detections as soon as the DDM criterion passes its threshold, meaning that our method is

too sensitive to noise. On the contrary, when windows are large, there was few detection and we lost

a lot on accuracy.

To figure out the problem, we plotted the difference in error rate between the two windows

mentioned in our proposed algorithm applied on SEA sudden drift dataset, as MODL level value, when

both windows sizes are fixed, is related to error rate change between them. We noticed that there

was a very evident drop around the change point in accuracy for every 1000 examples. However, it

showed only a slight increase in average of error rate between two windows in our algorithm during

the drift interval. It was hard to figure out the change point among the other peaks. In order to leave

out noise and rapid changes, a smoothing method would be useful, but would require supplemental

parameters.

35

Figure 6 Accuracy (on percentage) on SEA sudden drift dataset with Naïve Bayes classifier

Figure 7 Difference in error rate between two windows on SEA sudden drift dataset with Naïve Bayes classifier

Change point

36

7.3 Global error rate

Without drift

Classifier Naïve Bayes Perceptron

Detector Number of false detections Number of false detections

Wr Wc LED SEA LED SEA

50 50 1 0 0 0

100 50 1 0 0 2

450 50 1 0 0 0

100 100 1 0 0 10

200 100 1 0 0 0

DDM 0 0 0 0

Sudden drift

Classifier Naive Bayes Perceptron

Detector Correct detection
number/Total
detection number

Accuracy Correct detection
number/Total
detection number

Accuracy

Wr Wc SEA STAGGER SEA STAG
GER

SEA STAGG
ER

SEA STAGGER

50 50 1/4 2/4 0.94729 0.996
62

0/0 7/7 0.92845 0.87133

100 50 1/4 2/4 0.94729 0.996
62

0/5 1/6 0.92416 0.87143

450 50 1/4 2/3 0.94729 0.996
9

0/0 4/10 0.92397 0.87089

100 100 1/4 2/4 0.94729 0.996
62

0/4 4/4 0.92675 0.87151

200 100 1/4 2/4 0.94729 0.996
58

0/0 4/4 0.92691 0.87141

DDM 0/2 6/6 0.94743 0.996
99

0/0 4/4 0.92379 0.8717

Gradual drift

Classifier Naive Bayes Perceptron

Dataset Rotating hyperplane Rotating hyperplane

Wr Wc Accuracy Detection
number

Accuracy Detection
number

50 50 0.904 42 0.90332 10

100 50 0.90367 43 0.90345 10

450 50 0.90427 33 0.90127 11

100 100 0.90367 42 0.90254 13

200 100 0.9028 46 0.90135 14

DDM 0.90177 34 0.90501 7

37

Figure 8 Distribution of value p in two windows when data stream is stationary

We got rather good results on stationary dataset using our method, mainly because our first test on

DDM criterion filtered a lot of noises. The incremental global accuracy/ error rate moves more and

more slightly as number of instances increases. It caused MODL method to focus on difference in

distribution from tiny value interval (in our case between 0.83 and 0.85 for accuracy) comparing with

their absolute values (Figure 9). MODL noticed slight changes and then our algorithm became too

sensitive. Since detections were alarmed, the classifier was reinitialized and the detector faced the

same situation again, so false drift detections frequently appeared. That is why there were still several

false detections and we got much more detections on gradually changing dataset.

It seems that large window sizes produce less detection alarms. It takes more instances to fill both

windows. There is not an evident difference between different window sizes used for our method.

38

As shown in Figure 9, this criterion reacted to concept drift so slowly for the previous SEA dataset with

drift. In this case, our method monitors evaluation of global incremental error rate as indicator; the

delay is more significant than DDM. But the difference in accuracy between tested and alternative

detectors is almost negligible, indicating that it is not MODL discretization that caused the delay.

Figure 9 Global/ incremental error rate SEA without drift detection

39

7.4 Score for a target class

Without drift

Classifier Naïve Bayes Perceptron

 Number of false detections Number of false detections

Wr Wc LED SEA LED SEA

50 50 2 0 0 1

100 50 0 0 0 1

450 50 0 0 0 0

100 100 0 0 0 9

200 100 0 0 0 0

DDM 0 0 0 0

 Sudden drift

Classifier Naive Bayes Perceptron

Detector Correct
detection
number/Total
detection
number

Accuracy Correct detection
number/Total
detection number

Accuracy

Wr Wc SEA STAG
GER

SEA STAG
GER

SEA STAGG
ER

SEA STAGGER

50 50 1/46 3/5 0.94702 0.997
22

0/0 6/6 0.92408 0.87153

100 50 0/15 5/7 0.94535 0.997
51

0/0 10/10 0.92484 0.87133

450 50 0/6 3/3 0.94682 0.997
43

0/0 3/3 0.92009 0.87172

100 100 1/30 5/7 0.94687 0.997
27

0/0 3/3 0.92395 0.87165

200 100 0/7 5/7 0.94424 0.997
07

0/0 3/3 0.92539 0.87163

DDM 0/2 6/6 0.94743 0.996
99

0/0 4/4 0.92379 0.8717

Gradual drift

Classifier Naive Bayes Perceptron

 Accuracy Detection
number

Accuracy Detection
number

Wr Wc Rotating hyperplane Rotating hyperplane

50 50 0.89764 100 0.90219 17

100 50 0.88836 95 0.90373 10

450 50 0.87093 26 0.9028 12

100 100 0.8862 30 0.90264 13

200 100 0.88977 53 0.90218 13

DDM 0.90177 34 0.90501 7

40

We also got rather good results on stationary dataset using our method, mainly because our first

filter on DDM criterion eliminates a lot of noises and just a few level values were calculated.

Figure 10 MODL level value over time with detector (reference window size=50 ; current window size=50) and Naive Bayes

classifier on SEA sudden drift dataset

On the dataset with a sudden drift shown in Figure 10, our method still had problem on dealing with

classifier’s instable state. It detected many false drifts at the beginning of the learning process. Even

though the performance of the classifier becomes stable, the classifier’s structure inside and

parameters are still changing, which influences method’s indicator value.

On dataset with gradual drift, our method produced many unnecessary and badly positioned drift

detections disturbing classifier’s learning process. The indicator is influenced by not only incoming

instance’s properties but also parameters of the classifier (which are always changing over time in

case of gradual drifts).

41

7.5 Conclusion

On general, our method did not work better on detection than DDM method using the three

indicators directly in our experiences. The “right prediction” indicator is too robust to changes; the

second one, global incremental error rate, produced results almost the same as DDM’s; the third one

score of a certain class is too variant which can not be treated by our first filter.

Our method also showed an important dependency on dataset and classifier types. Classifiers keeping

short example memory like Perceptron do not fit method’s hypothesis of stable performance state.

And for example, in our experiences, MODL level detector worked much better on STAGGER dataset

than SEA dataset with sudden drift.

42

8 Conclusion

During this internship, firstly we briefly introduced our problem “concept drift” and studied several

strategies and methods widely used to solve it. Then, we concentrated our research direction on

method monitoring classifier’s prediction performance. Inspired by a method calculating MODL level

on instances’ variable distribution change, we developed our method using MODL on two observation

windows of different performance indicators.

MODL is a good method for discretization and a measure to detect difference on distribution with no

matter which kind of variable. However, in our case our indicator values are not variants. Considering

the reaction time and detector’s complexity, the sample size is rather small. MODL is much more

sensitive to noises. We had to use a preliminary filter which is the same as DDM method’s suspect

drift detection, to reduce number of false alarms. Our method is too dependant to the DDM filter and

few MODL level values were calculated. In the same time we lost our very first advantage that our

method has not a hypothesis on indicator value’s distribution.

Several propositions for future research:

- Apply smoothing on indicator value or MODL level value

- Use several different indicators at the same time

- Use larger reference window size and do resume on the reference window then calculate the

MODL level

Personally, this internship is my first experience on research domain. I got deeper comprehension on

machine learning especially on online/incremental classification. Concept detection is a very difficult

problem where we met a lot of problems during my internship. And I have learnt a lot on getting over

them and on research methodology, which will be useful for my future career.

43

9 Bibliography

Albert Bifet, G. H. (2010). Fast Perceptron Decision Tree Learning from Evolving Data Streams. PAKDD

2010, Part II, LNAI 6119, (pp. 299-310).

Albert Bifet, G. H. (2011, May). http://heanet.dl.sourceforge.net/project/moa-

datastream/documentation/StreamMining.pdf. Retrieved from DATA STREAM MINING A Practical

Approach.

Albert Bifet, G. H. (2009). New ensemble methods for evolving data streams. In John F. Elder IV,

Fran¸coise Fogelman-Soulie, Peter A. Flach, and Mohammed Javeed Zaki, editors, KDD (pp. 139–148).

ACM.

Alexis Bondu, B. G.-L. (2010). Density estimation on data streams : an application to Change

Detection. EGC (Extraction et Gestion de Connaissances). Hammamet, Tunisie.

Alexis Bondu, B. G.-L. (2010). Density estimation on data streams : an application to Change

Detection. EGC (Extraction et Gestion de Connaissances). Hammamet, Tunisie.

Alexis Bondu, M. B. (2011). A Supervised Approach for Change Detection in Data Stream. IJCNN

(International Joint Conference on Neural Networks) .

Anton Dries, U. R. (2009). Adaptive concept drift detection. Statistical Analy Data Mining, Vol. 2, No.

5-6, (pp. 311-327).

Arlot, S., & Celisse, A. (2010). Segmentation in the mean of heteroscedastic data by cross-validation.

Statistics and Computing .

Baena-Garcia, M. d.-A.-B. (2006). Early drift detection method. Proc. ECML/PKDD 2006, Work.

Knowledge Discovery from Data Streams, (pp. 77–86).

Bifet, A. (2009). Thesis: Adaptive Learning and Mining for Data Streams and Frequent Patterns.

Universitat Politècnica de Catalunya.

Bottou, L. (2004). Stochastic Learning. Advanced Lectures on Machine Learning , 146-168.

C. Alippi, G. B. (2010). Change Detection Tests Using the ICI rule. Proc. of IJCNN , 1-7.

C.Alippi, M. (2008). Just-in-time Adaptive Classifiers. Part I. Detecting non-stationary Changes. IEEE-

Transactions on Neural Networks, Vol. 19, No. 7 , 1145 - 1153.

C.Alippi, M. (2008). Just-in-time Adaptive Classifiers. Part II. Designing the Classifier. IEEE Transactions

on Neural Networks, Volume 19, Issue 12, (pp. 2053 - 2064).

Covertype. (n.d.). Retrieved from http://archive.ics.uci.edu/ml/datasets/Covertype

G. Hulten, L. S. (2001). Mining timechanging data streams. 7th ACM SIGKDD Intl. Conf. on Knowledge

Discovery and Data Mining (pp. 97–106). San Francisco, CA: ACM Press.

Gama, J. M. (2004). Learning with drift detection. Proc. 17th Brazilian Symp. Artificial Intelligence,,

(pp. 285–295).

44

Gama, J. R. (2003). Accurate decision trees for mining high-speed data streams. Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 523–528).

ACM New York, NY, USA.

Gama, J., Medas, P., & Rocha, R. (2004). Forest trees for on-line data. SAC ’04: Proceedings of the 2004

ACM symposium (pp. 632–636). New York, NY, USA: ACM Press.

Gavalda, A. B. (2007). Learning from time-changing data with adaptive windowing. Proc. of SIAM int.

conf. on Data Mining (SDM’07), (pp. 443–448).

Granger, J. C. (1986). Incremental learning from noisy data. Machine Learning, 1(3), (pp. 317–354).

Haixun Wang, W. F. (2003). Mining concept-drifting data streams using ensemble classifiers. In Lise

Getoor, Ted E. Senator, Pedro Domingos, and Christos (pp. 226–235). ACM.

Harries, M. (1999). Splice-2 comparative evaluation: Electricity pricing. Technical report, The

University of SouthWales.

http://archive.ics.uci.edu/ml/datasets.html. (n.d.).

http://www.orange.com/en/group. (n.d.).

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. 7th ACM SIGKDD

Intl. Conf. on Knowledge Discovery and Data Mining (pp. 97–106). San Francisco, CA: ACM Press.

Kasaei, R. D. (2008). On Automatic Threshold Selection in Regression Method for Change Detection in

Remote Sensing Images. In The 4th International Symposium on Telecommunications, IST, Tehran,

Iran, Aug. .

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting Change in Data Streams. Proceedings of the

30th VLDB Conference. Toronto, Canada.

Kim, W. N. (2001). A streaming ensemble algorithm (SEA) for large-scale classification. KDD

’01:Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 377–382). New York, NY, USA: ACM Press.

Kim., N. S. (2001). A streaming ensemble algorithm (sea) for largescale classification. KDD ’01: Proc. of

the 7th ACM SIGKDD int. conf. on Knowledge Discovery and Data Mining (pp. 377–382). ACM.

Klinkenberg, R. a. (1998). Adaptive Information Filtering: Learning in the Presence of Concept Drifts.

Workshop Notes of the ICML/AAAI-98 Workshop Learning for Text Categorization (pp. 33--40). Menlo

Park, CA, USA: Sahami, Mehran and Craven, Mark and Joachims, Thorsten and McCallum, Andrew,

AAAI Press.

Kubat., G. a. (1996). Learning in the presence of concept drift and hidden contexts. Machine

Learning,23(1) , 69–101.

Kyosuke Nishida, K. Y. (2007). Detecting concept drift using statistical testing. Proceeding DS'07

Proceedings of the 10th international conference on Discovery science. Springer-Verlag Berlin,

Heidelberg.

Langley, P. a. (1992). An analysis of bayesian classifiers. International conference on Artificial

Intelligence, AAAI , 223-228.

45

Last., M. (2002). Online classification of nonstationary data streams. Intelligent Data Analysis ,

6(2):129–147.

LED Display Domain Data Set . (n.d.). Retrieved from UCI Machine Learning repository:

http://archive.ics.uci.edu/ml/datasets/LED+Display+Domain

Leo Breiman, J. H. (1984). Classification and Regression Trees. Wadsworth International Group:

Belmont, California.

Maloof, J. K. (2007). Dynamic weighted majority: An ensemble method for drifting concepts. Journal

of Machine Learning Research, 8 , 2755–2790.

Nishida, K. Y. (2005). ACE: Adaptive classifiers-ensemble system for concept-drifting environments.

Proc. 6th Int. Work. Multiple Classifier Systems, (pp. 176–185).

Page, E. (1954). Continuous Inspection Scheme. Biometrika 41 .

Pedro Domingos, G. H. (2000). Mining HighSpeed Data Streams. KDD' 00 Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data mining , 71-80.

Poker Hand. (n.d.). Retrieved from UCI Machine Learning Repository:

http://archive.ics.uci.edu/ml/datasets/Poker+Hand

Rakesh Agrawal, T. I. (1993). Database mining: A performance perspective. IEEE Transactions on

Knowledge and Data Engineering, 5(6):, (pp. 914-925).

Roberts., S. W. (2000). Control chart tests based on geometric moving. Technometrics, 42(1) , 97–101.

Rosenblatt, F. (1957). The Perceptron--a perceiving and recognizing automaton. Cornell Aeronautical

Laboratory , Report 85-460-1.

Russell, N. C. (2001). Online Bagging and Boosting. Artificial Intelligence and Statistics 2001 (pp. 105-

112). Morgan Kaufmann.

Stefanowski, D. B. (2011). Accuracy Updated Ensemble for Data Streams. Hybrid Artificial Intelligence

Systems, 6th International Conference, HAIS 2011, Proceedings, Part II, (pp. 155-163). Wrocław,

Poland.

Wald, A. (1947). Sequential analysis. John Wiley and Sons, Inc.

Waveform Database Generator (Version 2) DataSet. (n.d.). Retrieved from UCI Machine Learning

Repository:

http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+%28Version+2%29

Žliobaite, I. (2010). ADAPTIVE TRAINING SET FORMATION. VILNIUS UNIVERSITY. Vilnius.

46

10 Annexes

10.1 Accuracy of incremental learner applied on source without drift

SDG

Perceptron

47

Naive Bayes

Hoeffding Tree

48

10.2 AUC of incremental learner applied on source without drift

SGD

Perceptron

49

Naive Bayes

Hoeffding Tree

50

10.3 DDM p+s of incremental SGD learner applied on source without drift

SGD

Perceptron

51

Naive Bayes

Hoeffding Tree

52

10.4 Global/incremental error rate of incremental learner applied on source

without drift

SGD

Perceptron

53

Naive Bayes

Hoeffding Tree

54

10.5 Error rate+its standard deviation of incremental learner applied on

source without drift

SGD

Naive Bayes

55

Perceptron

Hoeffding Tree

