A two layers incremental discretization based on
order statistics

Christophe Salperwyck and Vincent Lemaire

Abstract Large amounts of data are produced today: network logs, web data, social
network data... The data amount and their arrival speed make them impossible to be
stored. Such data are called streaming data. The stream specificities are: (i) data are
just visible once and (ii) are ordered by arrival time. As these data can not be kept in
memory and read afterwards, usual data mining techniques can not apply. Therefore
to build a classifier in that context requires to do it incrementally and/or to keep a
subset of the information seen and then build the classifier. This paper focuses on
the second option and proposed a two layers approach based on order statistics. The
first layer uses the Greenwald and Khanna quantiles summary and the second layer
a supervised method such as MODL.

Key words: Incremental learning, discretization, order statistics

1 Introduction

Many companies produce today large amounts of data. Sometimes data can be kept
into a database, sometimes their arrival speed makes them impossible to be stored. In
that specific case mining data is called stream mining. The stream specificities are:
(i) data are just visible once and (ii) are ordered by arrival time. Such an amount of
data leads to the impossibility to keep them in memory and to read them afterwards.
Therefore to build a classifier in that context requires doing it incrementally and/or
to keep a subset of the information seen and then build the classifier. In this paper
the focus is on the second option. This can be achieved by: keeping a subset of
the stream examples, calculating a density estimation or having order statistics. The
work presented in this paper focuses on numeric attributes discretization based on

Christophe Salperwyck
Orange Labs, Lannion, France — LIFL, Université de Lille 3, Villeneuve d’Ascq, France
e-mail: christophe.salperwyck @orange.com

Vincent Lemaire
Orange Labs, Lannion, France
e-mail: vincent.lemaire @orange.com

2 Christophe Salperwyck and Vincent Lemaire

order statistics. The discretization is then used as a pretreatment step for a supervised
classifier.

2 Related works

Incremental discretization is mainly used in two fields: (i) data mining field to be
able to discretize large data set or to discretize data on the fly; (ii) Data Base Man-
agement Systems (DBMS) to have order statistics (quantiles estimates) on tables
for building efficient query plans. This section gives a brief state of art of the main
incremental discretization methods used in these two fields to have order statistics.

2.1 Data mining field

Gaussian density approximation: The main idea of this method relies on the
hypothesis that the observed data distribution follows a Gaussian law. Only two
parameters are needed to store a Gaussian law: the mean and the standard deviation.
The incremental version required one more parameter: the number of elements. An
improved version for supervised classification on stream can be found in [11] but
it needs a parameter to set up the number of bins derived from the Gaussian. This
method has one of the lowest memory footprints.

PiD: Gama and Pinto in [8], proposed a two layers incremental discretization
method. The first layer is a mix of a discretization based on the methods named
“Equal Width” and “Equal Frequency” (algorithm details: [8] p. 663). This first layer
is updated incrementally and needs to have much more bins than the second one. The
second layer uses information of the first one to build a second discretization. Many
methods can be used on the second layer such as: Equal Width, Equal Frequency,
Entropy, Kmeans... The advantage of this method is to have a fast first layer which
can be used to build different discretizations on it (second layer).

Online histogram: Ben-Haim et al [1], presented an incremental and online
discretization for decision trees. Their algorithm is based on three methods: (i) Up-
DATE - add a new example. It can be done by inserting the new example directly in
an existing histogram or create a new bin with it and then do a merge, (ii) MERGE
- merge two bins in one, (iii) UNIFORM: use a trapezoid method to build the final
Equal Frequency bins. This method has a low computational requirement and is in-
cremental but it introduces some errors. In case of skewed distributions the authors
recommend to use bound error algorithms.

2.2 DBMS field

MLR: Manku et al. [10] developed an algorithm to approximate quantiles based
on a pool of buffers. Their approach has three operation: (i) NEW - takes an empty
buffer and fill it with new values from the stream, (ii) COLLAPSE - when all buffers
are full, some need to be merged to get new empty buffers — this operation takes

A two layers incremental discretization based on order statistics 3

at least two buffers and merges them to have just one full at the end, (iii) OUTPUT
- this operation collapses all the buffers into one and returns the quantile value for
the given parameter. This method has a theoretical bound on the error € and on the
required space: +log*(€N), where N is the size of stream.

GK: Quantiles provide order statistics on the data. The ¢-quantile, with ¢ € [0, 1]
is defined as the element in the position [@¢N] on a sorted list of N values. € is the
maximum error on the position of the element: an element is an € approximation of
a ¢ — quantile if its rank is between [(¢ — €) N] and [(¢ + &) N]. It corresponds to
an “Equal Frequency” discretization; the number of quantiles being in that case the
number of intervals.

The GK quantiles summary, proposed by Greenwald and Khanna [9] is an algo-
rithm to compute quantiles using a memory of 0(%log(£N)) in the worst case. This
method does not need to know the size of the data in advance and is insensitive to
the arrival order of the examples. The algorithm can be configured either with the
number of quantiles or with a bound on the error. Its internal structure is based on a
list of tuples < v;,g;,A; > where :

e ; is a value of an explanatory feature of the data stream
e g; corresponds to the number of values between v;_; and v;
e A; is the maximal error on g;

2.3 Summary

This subsection aims to present a synthetic overview of the methods described
above. This overview uses two criteria taken from [6]. The first criterion: global/local
corresponds to the way methods use data to build intervals. A method using all data
for building all bins is considered as global. A method splitting data into subset and
doing local decision is considered as local. The second criterion: supervised corre-
sponds to methods using class labels to build the discretization. We added two other
criteria: parametric - a non-parametric method finds the number of intervals auto-
matically, online/stream - evaluate the ability to work online and to deal with data
streams.

Table 1 presents the comparison of all methods seen above versus these four
criteria. The second part of the table reports the widely used offline methods Equal
Width and Equal Frequency, and also two competitive supervised methods used in
the next section: MDLP and MODL.

3 Our proposal
3.1 Objective

Our proposal aims to used at best the data mining field and the DBMS field to pro-
pose an incremental discretization method which intrinsically realizes a compromise

4 Christophe Salperwyck and Vincent Lemaire

| Method | Global/local | Parametric | Supervised | Online/stream |
Gaussian Global Yes No Yes
PID (Layer 1) Global Yes No Yes
Online histogram Global Yes No Yes
MLR Global Yes No Yes
GK Global Yes No Yes
Equal Width/Freq Global Yes No No
MDLP Local No Yes No
MODL Global No Yes No

Table 1 Discretization methods comparison

between the error € and the memory used. This method will also have to be robust
and accurate for classification problems.

3.2 Proposal

The idea is to use a two layer incremental discretization method as PiD [8] but in
our case bounds in memory. The first layer summarizes (using counts per class) the
input data, using much more intervals than required, in a single scan over the data
stream. The second layer processes the first layer summary and produces the final
discretization. The memory is used at best to have the lowest error.

For the first layer, the Greenwald and Khanna quantiles summary (GK) suits this
requirement the best and provides order statistics. We adapted the GK summary to
store directly the class counts in tuples. For the second layer, among methods using
order statistics two are particularly interesting considering their performances: Re-
cursive Entropy Discretization (MDLP) [7] and Minimum Optimized Description
Length (MODL) [3]. They both use an entropy based criterion to build the dis-
cretization and the MDL (Minimum Description Length) criterion to stop finding
intervals. They are supervised and known to be robust. The choice to use GK for the
first layer and either MDLP or MODL in the second layer is coherent since the com-
plete structure is based on order statistics. The errors on cut points depends mainly
on the number of bins used the first layer. Because the second layer used the MODL
approach and since MODL is a discretization method based on counts, the error on
a split position of our two level method is related at worst to: argmax;(g; + 4;)/2,
where i is the index of the interval int the first level. This indicates that when the
number of intervals of the first level increases, the error decreases.

Figure 1 shows how our method proceeds. A GK summary is created for each
feature and updated after the arrival of a new example. When the model is needed,
GK summaries provide univariate contingency tables to the discretization method
(MODL or MDLP). A new contingency table (expected smaller) is built and re-
turned by these methods. Using GK quantile values and the contingency table after
discretization give at the same time cut points, density estimations per interval and
conditional density estimation per interval for this numeric feature. Finally a classi-
fier based on order statistics is built, as for example a naive Bayes.

A two layers incremental discretization based on order statistics 5

Classifier

Fig. 1 Two layers discretization.

4 Experiments

4.1 Large scale learning challenge

The Delta training dataset from the large scale learning challenge' is used for a first
experiment. This dataset contains 500,000 examples; each example consists of 500
numerical features and a boolean label. 100,000 examples were kept for a test set
and train examples were taken from the 400,000 remaining instances. We adapted
the MODL discretization so that it uses GK quantiles summary as an input and built
a naive Bayes classifier on this discretization. The GK quantiles summary is set up
with 10 and 100 quantiles: GK10 (200K bytes) and GK100 (2M bytes). The reser-
voir sampling approach [13] is also used as a baseline method to compare perfor-
mances with a bounded memory technique: GK10, GK100 corresponds respectively
to a reservoir of 50 and 500 examples.

Figure 2 shows the comparison of theses approaches using the AUC (Area Under
learning Curve) performance indicator. The two reservoir sizes used are equivalent
to the memory consumed by GK10 and GK100. With limited memory GK meth-
ods are performing much better than reservoir sampling. Compared to the naive
Bayes classifier using all data into memory, the GK performances with 100 quan-
tiles (GK100) are almost the same.

This first experiment shows that with a small given amount of memory our
method performances are similar to the one loading all the data into memory.

4.2 ICML Exploration and Exploitation challenge

The ICML 2011 challenge® aims to show the online ability and robustness of our
two levels discretization. This challenge data are very unbalanced and contain a high
level of noise. The dataset contains 3 millions examples; each example consists of
100 numerical and 19 nominal features labels by a boolean (click/no-click). The
purpose of the challenge is to evaluate online content selection algorithms. Each
algorithm has to perform a sequence of iterations. For each iteration, a batch of six
visitor-item pairs is given to the algorithm. The goal is to select the instance which
is most likely to provoke a click. This challenge has strong technical constraints:
(i) a time limit (100ms per round), (ii) a limited space (1.7GB of memory). These
challenge data contain nominal features; we dealt with them using a hash based
solution: nominal values are hashed and put into a fixed number of buckets. The

! http://largescale.ml.tu-berlin.de
2 http://explo.cs.ucl.ac.uk/

6 Christophe Salperwyck and Vincent Lemaire

AUC for delta dataset with a naive Bayes classifier

[OR— L 3

09 [—¥ B

F’

AUC

o} T |
el N .

-

GK100 —=—
Reservoir sampling using memory equivalent to GK100 —#&—
GK10 —v—
04 | Reservoir sampling using memory equivalent to GK10 —e— 7
)) All data —X—
0 100000 200000 300000 400000

Number of examples

Fig. 2 Naive Bayes AUC performances with all data, GK and reservoir sampling.

click/no-click counts are stored for each bucket. These buckets are used as numerical
bins so that we can deal with nominal features as numerical ones.

Due to the challenge specificities our two layers approach was adapted. This
dataset is very unbalanced: clicks are very scarce - 0.24%. Methods as MODL are
known to be robust but this robustness with noisy data leads to a late discovery
of cut points as shown by the MODL curve on Figure 3. As the challenge score
was cumulative rewards, the model has to make decision even with just few clicks.
Waiting to make decision could provide a better classifier at the end but a lower score
on this challenge evaluation. To be more reactive probability estimation tree (PETs:
[12]) were built on our first level summaries. A tree can be seen as a discretization
method (our 2™ layer). The final step (corresponding to the Classifier on Figure 1)
is a predictor composed of an averaging of PETs’ predictions .

Figure 3 shows results on this challenge: Inria (ranked 1), our submission with
PETs (ranked 2"9) and a random predictor. Our approach was competitive and pro-
vides good density estimations for building online tree classifiers.

5 Future works

5.1 Extension to nominal features

The work presented before only addresses the discretization for numerical features.
Many classification problems contain nominal features. Moreover the MODL ap-
proach for grouping modalities [2] is a competitive method to find groups on nom-

A two layers incremental discretization based on order statistics 7

2500

2000 £

1500

1000

Cumulated clicks

500

0 100000 200000 300000 400000 500000
Batch number

Fig. 3 ICML Exploration and Exploitation challenge 2011 results.

inal features. The simplest summary for nominal features just keeps counts — it re-
quires low memory and processing time and is practicable if the number of different
values is low. Unfortunately the number of nominal values can be large, for exam-
ple: client ids, cookies, city names, etc. As we want to bound memory we can only
afford to focus on frequent values. This can be done using a hash function: nominal
values are hashed and put into a fixed number of buckets in which classes counts
are stored. In order to reduce errors several hashing functions may be combined as
proposed in the count-min sketch algorithm [4].

5.2 Dialogs between two layers

A dialog between the two layers to control the number of tuples in the first layer
could be beneficial to share memory between different features summaries. In a
classification problem with many features, some of them may need a very fine dis-
cretization and some may not need it. As the second layer is non parametric and
supervised it can inform the first layer if it needs more or less bins.

5.3 Online trees

The stream mining community often uses trees to build online and incrementally
classifiers. The most known ones are the Hoeffding trees proposed in VEDT [5]. In
those trees, leaves keep statistics on the data. A leaf is transformed into a node using
a split criterion (usually entropy or Gini index). As a split is a definitive decision the
Hoeffding bound is used to set the confidence () in the split. Another parameter
(7) is used to break ties between two attributes with similar criterion to avoid late
splits.

Our two layers discretization can be used as summaries in the tree leaves. More-
over the second layer of our discretization method (MODL method applied on the
first layer summary) gives cut points for a feature with a quality index. This quality
index allows selecting the feature on which to split and the cut points where to split.

8 Christophe Salperwyck and Vincent Lemaire

If a feature is not considered as informative its index equals zero. The tree can ex-
pend by splitting a leaf on the feature having the greatest non-null index as it is sure
that this feature is informative: the Hoeffding bound is not anymore needed. With
this MODL criterion there is no need to have the two previous parameters é and T
to build online trees.

6 Conclusion

The first experiments validate that with large data sets and bounded memory, our
two layers discretization has a strong interest. Our approach uses order statistics
on both levels and can be set up to use a fixed memory size or to stay beyond a
given error. We used Greenwald and Khanna quantiles summary for the first layer
and MODL discretization for the second layer as they are known to be amongst
the most competitive methods to build quantiles summary and perform supervised
discretization. Classifiers assuming features independence can be easily built on the
summary as shown on the first experiment with a naive Bayes classifier. Some other
classifiers such as online trees can also take advantage of our method.

References

1. Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. Journal of Machine
Learning 11, 849-872 (2010)

2. Boullé, M.: A Bayes Optimal Approach for Partitioning the Values of Categorical Attributes.
Journal of Machine Learning Research 6(04), 1431-1452 (2005)

3. Boullé, M.: MODL: A Bayes optimal discretization method for continuous attributes. Machine
Learning 65(1), 131-165 (2006)

4. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms 55(1), 58-75 (2005)

5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 71-80. ACM
New York, NY, USA (2000)

6. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continu-
ous features. In: In Proceedings of the Twelfth International Conference on Machine Learning,
pp- 194-202. Morgan Kaufmann Publishers Inc. (1995)

7. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classi-
fication learning. Proceedings of the International Joint Conference on Uncertainty in Al pp.
1022-1027 (1993)

8. Gama, J., Pinto, C.: Discretization from data streams: applications to histograms and data
mining. In: Proceedings of the 2006 ACM symposium on Applied computing, pp. 662—-667
(2006)

9. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. ACM
SIGMOD Record 30(2), 58-66 (2001)

10. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: New York, New York, USA

11. Pfahringer, B., Holmes, G., Kirkby, R.: Handling numeric attributes in hoeffding trees. Ad-
vances in Knowledge Discovery and Data Mining pp. 296-307 (2008)

12. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning
52(3), 199-215 (2003)

13. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathematical Software
11(1), 37-57 (1985)

