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Abstract.

A new method to maximize the margin of MLP classifier in classification prob-
lems is described. This method is based on a new cost function which minimizes
the variance of the mean squared error. We show that with this cost function the
generalization performance increase. This method is tested and compared with the
standard mean square error and is applied to a face detection problem.

1. Introduction

The multilayer perceptron is one of the most widely used network para-
digm [9] [6] and is usually trained using conventional techniques such as
backpropagation [5] with the mean squared error as cost function. In
classification problems, the decision boundaries can be very complex
and difficult to learn. In order to solve this problem more advanced
methods have been developed and applied for training multilayer per-
ceptrons.

The training phase, using backpropagation, is an algorithmic pro-
cess during which the network parameters are adjusted to minimize a
cost function in order to find appropriate boundaries between the class-
es. Most of the technics discussed in the litterature about feedforward
neural networks refer to network trained by minimizing a quadratic
function such as the mean squared error [7].

For multilayer perceptrons with continuous functions, several par-
ticular values of the output are used as desired values for the different
classes of a classification problem. Therefore two kinds of errors exist
: the estimation error which is the difference between the desired out-
put and the obtained output and the classification error leading to a
missclassified example when its estimation error is greater than a given
threshold.
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Bounds of generalization error of composite classifier systems have
been previously formulated [8][3] and are based on the notion of the
margin of classification. The size of the margin depends both on the
mean squared error and on the distribution of the estimation errors and
therefore on the variance of the squared error on each class (fig 1). Con-
sequently, the performance in terms of correct classification depends on
the particular shape of the distribution of the estimation error. There-
fore, the choice of an appropriate cost function to control the shape of
the distribution can be crucial to obtain a reasonable solution to the
problem.

Distribution of the estimation
error with minimization of the
variance of the squared error

Distribution of the estimation
. error without minimization of the
: variance of the squared error

Figure 1. Influence of the minimization of the variance of the squared error on the
distribution of the estimation error.

The present paper approaches the problem by introducing a new
method to maximize the margin. This method takes into account a
fourth order momentum , the variance of the squared error, through
the cost function to improve the generalization. This method is studied
where previous methods [8] [4] (involving several neural networks) to
increase the margin would lead to a too large computation time for
industrial application. We show that the margin can be increased with
a single multilayer perceptron, using this new cost function.

2. Increasing the margin by decreasing the variance of the
error

Let us consider a classification problem consisting of two classes C1, Co
classified by a discriminant neural network with one output. The goal
of the training phase is to obtain the following outputs for the network:

— if z € C then fi,(z) = d;

— if z € Cy then f,(x) = ds
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with  the input vector, di, ds the desired outputs respectively for
an example of the class Cq, Cy and f,(x) the answer given by the
neural network.

At the end of the learning phase, this neural network has a mean
squared error m on the class C7 with a variance 0’% and a mean squared

error my on the class Co with a variance o3 such as:
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where :

— np is the number of examples of the class Cp;
— sF is the output of the neural network for the input k;

— d" is the desired output for the input k;

There are several ways to take into account the minimization of the
variances 07 and o3 without degradation of the global mean squared
error m to increase the margin. One of them is to add to the standard
cost function a term associated to the variance of the squared error for
each class.

The expression of the cost function becomes in the case where there
are several output neurons :
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This cost function is the sum of the standard squared error and of
the variance of the squared error of both classes.

The expression of the gradient of this cost function C' for to the
output neuron i and for an example k € C] is :
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The gradient, which does not depend on the variance of the class
Cs, is consequently :
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where a” is the weighted input of the output neuron i for the example
k.
This gradient can be expressed as the sum of the standard gradient

(Yq]fmd) and of the gradient bound to the variance of the squared error

(¥E,).
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This formula is the same for an example belonging to the class Cs.
The derivation of the gradient of the hidden neurons is done using
the standard backpropagation with these two gradients on each hidden
neurons. The variation of the weights can then be expressed as:

Aw?‘l = O‘quadYq]Zad + Qar Yoy + ﬁAwfj
with agyqeq the learning rate on the squared error, g, the learning
rate on the variance of the squared error and 3 the momentum.

Since the mean squared error of each class and their variances should
be calculated after each modification of the weights, the computation
could be very long. To circumvent this problem, without degradation
of the performances, the following algorithm is used :
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* for all iterations

e for all examples k

* compute [y, (k)
* compute Yq’jmd and Y}, for the output neurons

* compute Yq’jw 4 and Y% for the hidden neurons

* update the weights

e compute the mean squared error for each class and their vari-
ances

3. Application

This new cost function is tested in the face detection pre-network of the
MULTRAK [1] application, which is a real time system for automatic
detection and tracking of multiple persons in a video conference. This
system is able to continously detect and track the position of faces in
its field of view. The heart of the system is a modular neural network
based face detector [2] giving accurate and fast face detection. The pre-
network is used as a filter which must be much faster than the modular
neural network without degradation of the face detection rate. For real
time performance of the system, the speed of the pre-network is critical
and imposes to use only one neural network.

We train two pre-networks as face detectors : one using the previ-
ously described cost function, and the other using the standard squared
error. Each neural network is a multilayer perceptron, with standard
sigmoidal functions, 300 input neurons (corresponding to the window
15x20 pixels), one hidden layer with 8 neurons and one output.

The database consisted of three set of examples :

— Learning set : 7000 front view and turned faces and 7000 non faces;

— Validation set : 7000 front view and turned faces and 7000 non
faces;

— Test set : 7000 front view and turned faces and 7000 non faces;

In order to compare the two cost functions differents experiments
are made. For each experiment, 50 trainings are performed with dif-
ferent initialization of the weigths. This allow us to obtain for each
experimental conditions, the mean and the confidence interval of each
value. Each training is stopped when the cost on the validation set does
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not decrease since 200 iterations. At the end of each training, the glob-
al mean squared error, the variance of the squared error of each class,
the margin and the detection rate are computed for the best configu-
ration of the weights for this training on each one of the three subsets
(training, validation and test set) and are discussed on the following
section.

4. Comparison and Results

The new cost function, which includes the variance term, is compared
to the standard cost function. In the following experiments we study the
influence of the variance term. We show that if the added term is well
chosen, the variance on the training set is decreased which increases
both the margin on the training set and the classification performance
on the test set. In the following figures the results based on the new
cost function are labelled ‘VMSE’ and the results based on the standard
cost function ‘MSE’.

4.1. THE INFLUENCE OF THE VARIANCE TERM

In this section the ayuqq parameter related to the squared error has a
constant value of 1072. The influence of n = (awrl /Qquad )=(Ctpar Np
/@quad) ( where n, is the number of the examples of the class C}) is
examined in the [10~% : 10%] range to estimate how the added gradient
interacts with the gradient of the squared error. Comparisons are per-
formed for the global mean squared error and for the variance of the
squared error of each class. The results for the standard cost function
are constant since gyqq is constant.

01} VMSE

0.01 M

0.001 . . . . . .
0.0001 0.001 0.01 0.1 1 10 100 1000

Figure 2. The mean squared error for the learning set with the two cost functions
Versus 7.

Figure 2 shows the results obtained for the global mean squared error
with the two cost functions on the learning set. For € [107* : 10], the
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two cost functions provide approximatively the same results with the
same confidence interval. On the other hand, for n = 100, the global
mean squared error strongly increases with the new cost function. In
this case, a;ar is so great, compared to qgyqq, that the minimization of
the variance prevents the minimization of the mean squared error and
the neural network always gives the same result.

Figures 3 and 4 show the results obtained for the variance of the
squared error of each class on the training set. For n € [107* : 1071]
the two cost functions exhibit similar performances. For n € [107! : 10]
the new cost function reduces the variance, which is much as 37 %
smaller than with the standard cost function, together with a similar
confidence interval. On the other hand, for n = 100, the variance is
smaller but the confidence interval strongly increases.

0.008 ;
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Figure 3. The variance of the first class (faces) for the learning set with the two cost
functions versus 7.

0.008

0.007
0.006
0.005

!
o 1Tt

0.003 | {

0.002

0.001

0 ‘ ‘ ‘ ‘ ‘
0.00010.001 0.01 01 1 10 100 1000
Figure 4. The variance of the second class (non faces) for the learning set with the

two cost functions versus 7.

These results show that the added variance term interacts with the
squared error term. If it is comparable to the squared error term, it
allows to improve the variance of the mean squared error on both class-
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es. A well chosen value of the a,,, learning step of the variance term
improves the variance of the squared error.

4.2. MARGIN MAXIMIZATION

A second experiment shows the relation between the minimization of
the variance of the squared error and the maximization of the margin
(Qquad=0.01; cyy,=0.01).

To quantify the percentage of the population within the margin,
near the boundary and therefore the correctly classified rate outside the
margin we determine a threshold 6 (see figure 5), for different values of
the margin. This threshold is tuned to obtain the best detection rate
for the learning set, such that an example is considered well classified
if

— fw(k) <O and k € Cy

— fw(k) > 6 + Margin and k € C

Output histogram of
the neural network

Non
Faces Faces

/ Output
o

Margin

Figure 5. Explanation of the correctly classified rate versus the margin

The figure 6 shows that for a given margin, the detection rate with
the new cost function is better than the standard cost function. There-
fore for a given detection rate, the margin is increased.

Considering a detection rate of 98.5 % (fig 6) the new cost func-
tion has a margin of 0.17 + 0.01 and the standard cost function has a
margin of 0.12 £+ 0.04. This difference, although small, represents an
improvement of 29.4 % which is important. The effect of the minimiza-
tion of the variances is to push the face distribution towards the right
and the non face distribution towards the left on figure 5.

Our second goal is achieved : the minimization of the variance of the
squared error of both classes indeed maximizes the margin.
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Figure 6. The correctly classified rate for the learning set versus the margin

4.3. A BETTER MARGIN INCREASES THE GENERALIZATION

This section shows that the maximization of the margin on the learn-
ing set improves the performances on the test set. Figure 6 shows the
effect on an improved margin : the difference between the two curves
represents the improvement of the margin.

With the standard mean squared error and for a detection rate of
the faces of 99.5, % the false alarm rate is 8 % while, with the new
cost function, this false alarm rate is only 5 % which represents an
improvement of 37 %.
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Figure 7. Detection rate of the faces on the test set versus the false alarm rate
(missclassified faces and non faces) for the two cost functions.
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5. Conclusion

A new direction is proposed to increase the generalization performance
in classification problems of multilayer perceptrons. This new cost func-
tion is used in the face detection network called pre-network of the
MULTRAK [1] application. The use of our new cost function has allowed
to increase the performances of the pre-network as compared to the
standard mean squared error : the false alarm is reduced by 20 % (on
the test set A of the CMU face database) for the same detection rate.

This new method has been applied to a classification problem with
two classes but could be extended to classification problems with more
classes and in methods involving several neural networks.
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