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Abstract. This paper presents a new approach for automatic image color correc-
tion, based on statistical learning. The method both parameterizes color indepen-
dently of illumination and corrects color for changes of illumination. The moti-
vation for using a learning approach is to deal with changes of lighting typical
of indoor environments such as home and office. The method is based on learn-
ing color invariants using a modified multi-layer perceptron (MLP). The MLP
is odd-layered. The middle layer includes two neurons which estimate two color
invariants and one input neuron which takes in the luminance desired in output of
the MLP. The advantage of the modified MLP over a classical MLP is better per-
formance and the estimation of invariants to illumination. The trained modified
MLP can be applied using look-up tables (LUTs), yielding very fast processing.
Results illustrate the approach.

1 Introduction

The apparent color of objects in images depends on the color of the light source(s)
illuminating the scene. Because of this color constancy problem, image processing algo-
rithms using color, such as color image segmentation or object recognition algorithms,
tend to lack robustness to illumination changes. Such changes occur frequently in im-
ages (shadows, lights on/off, varying sunlight). To deal with this, a color correction
scheme that can compensate for illumination changes is needed.

2 Illumination correction - state of the art

Color in images is usually represented by a triband signal, for instance Red-Green-Blue
(RGB). As discussed in the introduction, this signal is sensitive to changes in illumina-
tion. However, image processing techniques need to be robust to such changes. There-
fore color needs to be parameterized independently of illumination. This can be done
by parameterizing color with one or two parameters or by correcting the triband signal.
A number of color parametrization and color correction schemes have been described
in the literature [9]. This section describes a number of approaches that work on a single
image. Table 1 summarizes their pros and cons.

Examples of directly correcting the triband signal are diagonal color correction
(such as gray world and white patch) and non-diagonal color correction [6]. They are
both linear, and cannot model non-linearities. They also rely on limiting assumptions
(known image mean for gray world, known maximum value for each channel for white



Table 1. Comparison of color correction approaches that work on a single image.

approach principle local / global cons pros
of the approach

estimation of neural network global hypothesis of same illuminant
illuminant estimates illuminant illuminant for whole image, explicitly
color [1] chromaticity from further processing needed identified

image uv histogram for image correction
estimation of ratio-based analytic local / original/ corrected images fast
color invariants such as color invariants pixel-wise can’t be reconstructed

(Rx1
Gx2

)/(Gx1
Rx2

) [2] from invariant images
luminance correction simple analytic local / completely local, very fast (LUT

in the parametric color correction pixel-wise relatively sensitive to implementation
HSV color space [3] illumination changes possible)

color transfer normalization by mean global limited to global fast
[4] and variance in lαβ changes in

color space illumination
intrinsic image by finds an axis invariant global need for few colors and many works for any

entropy minimization to illuminant color by illuminations in image illuminants
[5] entropy minimization, to determine invariant axis,

then projects image not fast
perpendicularly to axis

diagonal linear global limiting assumptions very fast
color correction (gray mean, white max),

(gray world, white patch) non-linearities not modeled
non-diagonal PCA-based local / pixel-wise illuminants must fast (LUT

color correction [6] linear correction be known implementation possible)
enhancement of dark multi-scale large aim is color fairly fast (3 frames / sec

images using modified convolution neighborhoods correction for visual effect, for 640x480 images),
luminance-based (linear) performance for background any type of lighting

multi-scale retinex [7] subtraction unknown (blueish, reddish, etc ...)
color correction statistical learning local / trained for a given rear could be very fast

using a ”classic” MLP of non-linear pixel-wise with projection environment & (using LUTs)
[8] color correction learnt global specific lighting conditions,

transform by MLP a priori does not estimate
about lighting color invariants

color correction statistical learning local / trained for a very fast using LUTs
using a of non-linear pixel-wise with range of lighting conditions (3.75 ms per frame or 266

trained modified MLP color correction learnt global (here lighting frames per second
(this paper) transform by MLP a priori customary in home and for 320x240 images),

+ statistical learning about the type office environments, trained for a range of
of 2 color invariants of lighting e.g. whitish & yellowish) illumination variations



patch, illuminants known for [6]). They are very fast and can be implemented using
LUTs for even greater speed.

In [8] a neural network is used to learn the color correction needed in a specific
rear projection environment. It does not estimate color invariants. It also is trained for
specific lighting conditions.

An example of mono-band parametrization of color is hue (from hue-saturation-
value, a.k.a. HSV) [3]. An example of bi-band color parameterization are chrominances
uv (from the YUV color space) [3] and the ab values from the CIE Lab color space [3].
These three color representations (H, uv or ab) are analytical and thus do not require
learning. They are fast pixel-wise methods. They have a certain robustness to illumina-
tion changes, but this robustness is limited. Color transfer [4] is a method with a similar
philosophy, normalizing color by its mean and variance in lαβ space. It is global and
fast, but limited to global changes in illumination.

An approach for estimating color invariants from images consists in calculating ra-
tios of RGB components at a given pixel (R/B) or between neighboring pixels (such as
(Rx1

Gx2
)/(Gx1

Rx2
)) [2]. This method is also pixel-wise and thus fast. These invari-

ants are also very robust to illumination changes. However, a lot of information about
the original signal is lost and reconstructing it from the invariants is difficult.

A more sophisticated method has been proposed by [5]. It estimates a mono-band
invariant and is based on a physical model of image formation. It works globally from
the whole image. In (log(R/B), log(G/B)) color space, an axis invariant to illuminant
color is determined by entropy minimisation. Projecting the image perpendicularly to
the axis gives corrected colors. The approach does not require learning and applies to
any type of illuminant, but is relatively slow. It also requires that the image contains
relatively few different colors and many changes of illumination for each color.

Yet another approach consists in explicitly estimating the color of the illuminant
[1]. A neural network estimates the chromaticity of the illuminant from the histogram
of chromaticity of the whole image. The method works globally from the whole image
and supposes there is only one illuminant for the entire image.

Another method is [7]. It is a bit out of the scope of this paper, since it aims at
the enhancement of dark images for visual effect, and does not give information about
performance for color correction. However, it gives a benchmark about speed, since the
authors aimed at fast processing. This will be discussed in section 4.5.

3 A statistical approach to measure color invariants

3.1 A modified multi-layer perceptron: motivation

The motivation of this work is twofold: (1) to parameterize color compactly and inde-
pendently of illumination by two invariants (2) to do it in real-time. Firstly, two param-
eters are needed to parameterize color with enough degrees of freedom to reconstruct a
triband signal, given a luminance (or a gray level signal). Secondly, real-time processing
(25/30 images per second for video) is also necessary for some applications. For this,
slow methods such as [1] and [5] are unsuitable. Pixel-wise approaches are more suited.
Among those, hue-Saturation, uv (from YUV) and ab (from the CIE Lab color space)



Fig. 1. A classical MLP with 4 inputs can be used to perform color correction. (Ri, Gi, Bi)
is the input color. (Rd, Gd, Bd) is the desired output color, corresponding to the same color seen
under a different illumination. Ld = Rd+Gd+Bd

3
is the luminance of the desired output and is a

direct function of the illumination.

Fig. 2. A modified MLP for color correction and color invariant learning. λ and µ are the
color parameters invariant to illumination that the MLP is trained to estimate. (R̂d, Ĝd, B̂d) are
the actual outputs of the network. Bias neurons are omitted from this figure.

lack robustness to illuminations changes. [2] is robust to these, but reconstructing an
image from the invariant(s) is difficult. A new fast approach is needed.

In practice, a limited range of illuminants are available in indoor environments. It is
therefore interesting to use learning methods to find a color parameterization invariant
to the ”usual” illumination changes. This also provides a priori information about the
illuminants, making the color correction global, which is, as Land showed [10]), nec-
essary to perform correct illuminant correction. In practice, the lighting usually found
in home and offices comes from fluorescent lights, incandescent light bulbs and natural
sunlight from windows. They tend towards the whitish and yellowish areas of the spec-
trum (very few bluish or reddish lights). These are the illuminants that our approach
deals with.

Our learning method of choice is neural networks and more specifically multi-layer
perceptrons (MLPs) for their ease of use and adaptability. A classic MLP with 4 input
neurons and 3 output neurons can be used for color correction under varying illumina-
tions (see fig. 1). The fourth input, a context input, is the luminance L of the expected
output and is a direct function of the illumination. This fourth input neuron prevents
the mapping to be learnt by the MLP from including one-to-many correspondences
(the different corrected colors corresponding to the same input color with different il-
luminations) and thus makes it solvable. If the MLP contains a bottleneck layer with
3 neurons, then these perform a re-parameterization of RGB space. However the three
color parameters estimated by the 3 neurons (called here p1p2p3) have no reason to be
invariant to illumination.



To force the MLP to code color independently of illumination, the architecture of
the traditional MLP is modified (see fig. 2). The entry point L of the MLP (fourth
input neuron) is moved to the bottleneck layer of the network so that it becomes the
third and last neuron of this layer. This displaced entry makes our MLP different from
a trivial compression network. The two other neurons of the bottleneck layer have
outputs (λ, µ). During training, the network learns to reconstruct the corrected color
(Rd, Gd, Bd) from (λ, µ) and the desired output luminance Ld = Rd+Gd+Bd

3
. Thus it

learns to ignore the luminance of the input (Ri, Gi, Bi) and learns to estimate two color
characteristics (λ, µ) that are invariant to illumination.

The approach does not require any camera calibration or knowledge about the im-
age. However, it supposes that the illuminants are of the type commonly found in indoor
environments.

3.2 Training the modified multi-layer perceptron

As shown in fig. 2, the modified MLP includes 5 layers (this could be generalized
to an odd number of layers). The input and output layers have 3 neurons each (plus
an additional bias), for RGB inputs and outputs. The middle layer includes 3 neurons
(excluding bias): their outputs are called λ, µ and L. The second and fourth layers have
arbitrary numbers of neurons (typically between 3 and 10 in our experiments). The links
between neurons are associated to weights. Neurons have sigmoid activation functions.
The network includes biases and moments [11].

A database of images showing the same scenes under different illuminations is used
to train the modified MLP. The illuminations are typical of indoor environments such
as home and office.

A classic MLP training scheme based on backpropagation is applied. A pixel is ran-
domly sampled at each iteration from the training set. Its RGB values before and after
an illumination change (from real images) are used as input (Ri, Gi, Bi) and desired
output (Rd, Gd, Bd) to the network. Propagation and back-propagation are then per-
formed, with one modification: as mentioned above, the output L of the third neuron
of the third layer is forced to the value of the luminance corresponding to the desired
output color.

3.3 Use of the modified multi-layer perceptron

The trained modified MLP can be used to correct color images. Each image pixel is
propagated through the first half of the trained network to find the invariants λ and µ.
An arbitrary luminance L is imposed on the pixel by forcing the output of the third
neuron of the third layer to L. The output of the trained network then gives the cor-
rected color. If a constant luminance L is used for all pixels in the image, an image
corrected for shadows and for variations of illumination across the image and between
images is obtained. The color correction can be tabulated for fast implementation. The
approach could be easily extended to a greater number of inputs and outputs or different
inputs/outputs than RGB. For instance, YUV or HSV, or redundant characteristics such
as RGBYUVLab could be used as inputs and outputs.



4 Image correction results

4.1 Experimental conditions and database

The network was trained using 546000 pixels, randomly sampled from 91 training im-
ages (6000 pixels per image), taken by 2 webcams (Philips ToUCam Pro Camera and
Logitech QuickCam Zoom). The training images are of indoor scenes viewed under
different illuminations typical of home and office environments. Testing was performed
on other images taken by the 2 webcams used for training and by a third webcam, not
used for training, a Logitech QuickCam for Notebooks Pro.

In practice, using 8 neurons in the second and fourth layers of the MLP gives good
performance. A gain of 1.0 was used, with a momentum factor of 0.01 and a learning
rate of 0.001. Pixels that were too dark (luminance ≤ 20) or too bright / saturated
(luminance ≥ 250) were not used for training.

Fig. 3. Example of color correction learnt by the modified MLP. (1) original image (unknown
illumination). (2) and (3) invariants λ and µ estimated by the MLP. (4) locus of the invariants in
the uv space. (5) corrected image with pixel luminance inputs set to values proportional to pixel
luminances in the original image (plus a constant). (6) corrected image with the pixel luminance
inputs set to a constant value for all pixels. (7) 7 color peaks found by mean shift [12] in the
corrected image (6). (8) resulting image segmentation.

4.2 Comparison with a ”classical” multi-layer perceptron

Table 2 shows that the modified MLP (fig. 2) performs better in reconstructing target
images than a classic MLP (fig. 1). The reconstruction is done given the expected lumi-
nances Ld of the pixels of the desired target image.



Table 2. Mean error between reconstructed and target images for a ”classical” MLP and the
modified MLP presented in this article. The mean error was calculated using 748 320x240 test
images (not in the training set). The error is averaged over the three color components (R,G,B).

for a classical MLP for the modified MLP
mean error (in pixel values ∈ [0, 255]) 10.47 5.54

relative mean error 4.11% 2.17 %

4.3 Invariant estimation by the modified MLP

Figure 3 shows the two invariants (λ, µ) learnt by the modified MLP and calculated on
an image (see part (1) of fig 3) of unknown illumination. The two invariants are seen in
parts (2) and (3) of the figure. Objects of similar color to the human eye have similar
values of λ and µ. Part (4) of fig. 3 shows the locus of the invariant values (λ, µ) in
the image as a fonction of the chrominance values (u, v) (from YUV color space) of
the image pixels. The locii of the two invariants are not identical, and thus we have two
invariants and not only one. Part (6) of figure 3 shows the corrected image estimated
for a constant luminance input over the image. Much of the influence of shading and
variations of illumination across the image is removed, apart from specularities (white
saturated areas) which are mapped to gray by the network. Areas of similar color in
the original image (despite shading and illumination) have much more homogeneous
color in the corrected image. This is further shown by performing mean-shift based
color segmentation [12] on the corrected image. Seven areas of uniform color are read-
ily identified and segmented (see part (7) and (8) of fig. 3) in the corrected image. They
correspond roughly to what is expected by a human observer. This example illustrates
that our modified MLP successfully learns a parameterization of color by two parame-
ters that are invariant to illumination.

Fig. 4. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and the whole-image color correction method of Finlayson et al [5]. Application to shadow
detection. Example I. (a) and (d) show the original image. (b) is the invariant image obtained using
the method of [5] and (c) shows the shadow edges estimated from (b). (e) shows the corrected
image estimated using the modified MLP, (f) and (g) the results of mean shift color segmentation
[12] from (e) and (h) the shadow edges estimated from (g).



Fig. 5. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and the whole-image color correction method of Finlayson et al [5]. Application to shadow
detection. Example II. (a), (b), (c), (d), (e), (f), (g) and (h) illustrate the same steps as in fig. 4.

4.4 Comparison with other color correction methods from the literature

Figures 6, 4 and 5 compare our color correction approach with other color correction
approaches.

Figure 6 compares our approach to HSV-based color correction and applies it to
color-based background subtraction. The two first images of the first and second columns
of the figure show that our color correction scheme is indeed robust to changes in illu-
mination, since there is much less difference between the images after correction than
before. Figure 6 also shows that the correction performed in this paper compares fa-
vorably with an HSV-based color correction (which consists in taking an RGB color to
hue-saturation-value space, setting its value/luminance to a constant, then going back
to RGB space to get the corrected color).

Figures 4 and 5 illustrate that our correction is of similar quality to that of Finlayson
et al [5] (briefly described in the introduction of this paper). The application of color
correction is the detection of shadow contours (which can be used for shadow removal,
as shown in [5]). Even though it might be less robust to large light changes or unusual
light changes (such as turning on a blue or red light), our method is faster, being pixel-
wise.

4.5 Performance of a LUT implementation of the trained modified MLP

Color correction by the modified MLP can be tabulated, making it one the fastest pos-
sible color correction approaches. Execution time using LUTs is 3.75 ms for an entire
320x240 image, on a Pentium4 3GHz. This way, color correction can be used as a first
step in video-rate image processing, without using a large part of the frame processing
time (40ms). This LUT implementation is possible because the approach is pixel-wise.

An HSV correction scheme could be as fast (using LUTs), but it would be less
performant, as illustrated by fig. 6. A color correction scheme based on [5] would be of
equal performance, as illustrated on examples by fig. 4 and 5. It could deal with more
changes of illumination, since our approach is limited to the type of frequently found
indoor lighting the modified MLP was trained for. However, working globally on the
image, it could not be implemented as a LUT, and would thus be slower. The approach
of [7] (briefly described in section 2), which performs good-quality color enhancement



Fig. 6. Comparison of the pixel-wise color correction by the modified MLP presented in this
paper and pixel-wise HSV-based color correction, HSV being the well known hue-saturation-
value color space.

at good speed, is slower than our approach (3 frames per second on a Pentium4 2.26GHz
for a 640x480 image).

5 Conclusion

This paper presents a new neural network-based approach to estimating image color
independently of illumination. A modified multi-layer perceptron is trained to estimate



two color invariants and an illumination- corrected color for each input color. The net-
work is trained for typical indoor home and office lighting (fluorescents and light bulbs)
and outdoor natural light, using two webcams. Such statistical training gives the ap-
proach a good compromise between generality (being able to handle different types
of illuminants) and discrimination power (being able to discriminate between different
colors). Experiments with lighting changes and another webcam show that the training
seems to have good generalization properties. Once learning has been achieved, color
correction is very fast using look-up tables, so that color correction can be performed
as a part of image pre-processing before applying other image processing algorithms
(such as background subtraction or color-based image segmentation).
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