
Feedback - Study and Improvement of
the Random Forest of the Mahout library in

the context of marketing data of Orange

C. Thao∗,∗∗, N. Voisine∗, V. Lemaire∗, R. Trinquart∗

∗ Orange Labs, 2 avenue Pierre Marzin, 22300 Lannion, France
∗∗Predicsis, 5 rue de Broglie, 22300 Lannion, France

Abstract. In the realm of Big Data systems, Hadoop has emerged as one of the
most popular systems and a very diverse ecosystem has grown around it, meet-
ing all kinds of functional and technical needs. One niche that should have been
a place of choice in this ecosystem is data analytics: first because getting value
out of large datasets requires efficient Machine Learning (ML) algorithms, sec-
ond because large clusters with abundant CPUs resources seem like appropriate
playfields for ML algorithms which are often very resource-intensive computing
tasks. Unfortunately among the myriad of open source projects, there are very
few data analytics tools that have been ported to the Hadoop framework. Apache
Mahout stands out among those rare initiatives: this project is mainly known for
its recommendation application, but it also offers a warehouse of ML algorithms,
advertised to run on Map/Reduce. We did investigate the twenty algorithms pro-
posed within Mahout and in this report we focus on the most promising one: the
Random Forest implementation. Relying on extensive tests, including specific
marketing data from Orange, we provide an in-depth feedback on the use of this
tool, both from a practical and theoretical perspective, and we suggest several
improvements.

1 Introduction
The decreasing cost of data storage has led to the accumulation of large and complex

datasets, which are widely seen as new opportunities for business. Orange - a multinational
telecommunications corporation - has to analyze the data of its network to improve profitability
and create new services. To give a sense of scale, in order to increase customer satisfaction on
services, Orange has to analyze Quality of Services (QoS) and Quality of Experience (QoE)
indicators for its 150 million of mobile customers. Those QoS and QoE indicators result from
the combination of different data sources (network probe, SI). The main purpose consists in
real time detection or prediction of QoS or QoE. This would allow Orange either to improve
quality of network or to provide new services based on QoE. Therefore applying data min-
ing techniques to these vast amounts of data is crucial. This raises numerous issues such as
scalability of data mining algorithms, automation of the data mining process and control of
over-fitting.

- 413 -



Feedback - Random Forest of Mahout library- Marketing data

The scalability issue is usually the first one that people have in mind with big data. The
availability of efficient computing environments such as Hadoop (Had) clusters with the map-
reduce framework is often considered as the solution to the scalability issue. One open source
project, named Mahout (Mah), actually claims to provide implementation of several learning
algorithm that not only get data out of Big Data repository but actually run on a Hadoop cluster,
thus taking advantage of the parallelization. This project has gained increasing attention after
some companies reported using it with successful results. To be more precise, Mahout gathers
libraries for both supervised and unsupervised learning. The success stories about Mahout all
relate to unsupervised learning libraries. On the contrary, there is very little said about the
supervised libraries.

Still, these computing environments have been originally designed for the search engine
tasks, based on indexing billions of documents; they are efficient for some families of tasks but
cannot be considered as universal models for parallel computing. Among the data mining tasks,
the deployment phase is data intensive and is likely to fit well into the map-reduce framework.
On the contrary, the modeling phase is CPU intensive, and exploiting efficiently the resources
of a Hadoop cluster is an open problem.

In a previous study (Dream, 2013) we have observed that Random Forrest (RF) is (one of)
the best method of Mahout, both in terms of quality of the models and in terms of scalability
since this algorithm is natively a parallel process. The aim of our work is to study and improve
if necessary the RF algorithm of Mahout for use on Hadoop cluster. In the first part of this
report we show a preliminary study of the Random Forest of the Mahout library.

In the second part we suggest several improvements of the initial library. In a third part
we propose a new decision tree algorithm to improve performance and reduce over-fitting. We
provide results on both academic datasets and Orange data before coming to a conclusion.

2 Preliminary study
In the first part of our study we investigated the behavior of the Random Forests (RF) of

the Mahout library as it is packaged in its latest available version (0.9). This section begins
with a reminder of the RF algorithm. Then the second subsection provides the experimental
conditions we used for all the experiments of these report. In the third subsection, we present
the obtained results, which leads to a discussion about potential issues and solutions.

2.1 Random Forest
The “Random Forests” is a supervised classifier introduced by Leo Breiman (Breiman,

2001). It is related to the decision tree approach but the predictive model no longer consists
in a single tree: instead it gathers a multitude of trees. Random forests are a combination
of tree predictors such that each tree depends on the values of a random vector set sampled
independently and with the same distribution for all trees in the forest. The generalization
error for forests converges to a limit as the number of trees in the forest becomes large. The
generalization error of a forest of tree classifiers depends on the strength of the individual
trees in the forest and the correlation between them. Using a random selection of features to
split each node yields error rates that compare favorably to Adaboost (Freund and Schapire,
1996), but are more robust with respect to noise. Internal estimates monitor error, strength,

- 414 -



Thao C., Voisine N., Lemaire V., Trinquart R.

and correlation and these are used to show the response to increasing the number of features
used in the splitting. Internal estimates are also used to measure variable importance. In the
Random Forests, it is not necessary to use a set of validation data. Indeed, during the bagging,
many instances are not used for the construction of a tree. Each classifier learns only a portion
of the data. Unused data are called Out-Of-Bag. They provide a good way to estimate the
generalization performance of the classifier.

2.2 Experimental conditions
2.2.1 Industrial Context

In this report we are focusing on the behavior of Mahout when dealing with data which
have the characteristics of “Orange Data", i. e.:

— Data constraints: (i) Heterogeneous, (ii) Missing values, (iii) Two or Multiple classes,
(iv) Heavily unbalanced distributions; with

— Many scales: (i) Tens to millions of instances, (ii) Tens to tens of thousands of vari-
ables;

— Many types of data: (i) Numerical, (ii) Categorical, (iii) Text, (iv) Image.
We restrict the study to the task of supervised learning, id est classification problem such as
churn detection, appetency prediction ... And among potential datasets for evaluation, we have
a strong interest in those closer to marketing problems.

2.2.2 Parameters that influence the behavior of Mahout

When installing the Mahout library on a Hadoop platform there are several parameters
that will influence the performances obtained using the Mahout’s RF: the number of machines
(nodes) in the cluster and their characteristics, the configuration of the distributed filesystem
HDFS, especially regarding the way blocks are created (size and replication factor), the split
criterion used in the RF algorithm, the number of trees in the Forests, the way to combine the
trees. The following paragraphs describe each of these points. We also indicate at the end of
this section the baseline we used to check the validity of the results obtained with the RF.

Cluster: All tests are performed on a small exploration Hadoop 1 cluster (Had) of Orange
Labs which has the following properties: (i) 6 nodes with: 2 Intel(R) Xeon(R) CPU E5-2407
0 @ 2.20GHz, total cpu cores per node: 8, 32 Go of RAM, Hadoop version: Cloudera CDH4
(Hadoop 0.20), Mahout 0.7 (as packaged within Cloudera CDH4.2).

Data Nodes & Block Size: The primary components of a Hadoop platform are HDFS and
MapReduce. HDFS is a distributed system designed to store files of very large volumes of data
on a large number of machines, whereas MapReduce is a framework for distributing process-
ing over large files. When those two components are combined on the same set of machines
(cluster nodes), the resulting platform acts as a single system, providing high availability, load

1. Hadoop (High-availability distributed object-oriented platform) is a distributed system that addresses the issues
of “big data”. Hadoop uses a distributed storage system, which is called HDFS (Hadoop Distributed File System) and
incorporates analysis systems like MapReduce, Mahout or Spark. Hadoop allows splitting data and the execution of
analysis on parallel processing.

- 415 -



Feedback - Random Forest of Mahout library- Marketing data

balancing, and parallel processing. With HDFS, any large data file is decomposed into blocks
and those are distributed across the nodes of the cluster. Based on HDFS blocks, the Map and
Reduce functions can be distributed across the cluster and perform on subsets of large data sets,
allowing better scalability. Unlike a conventional storage system, where blocks are a matter of
kilo-octets, the block size is set by default to 64 MB. This default value can be adjusted by the
cluster administrator and even changed on the fly by a user for any specific fly and/or process-
ing. Typical block sizes are 128MB, 256 MB, 512 MB or 1 GB. Our cluster was configured
with a default size of 128MB.

Note: The behavior of Random Forests in Mahout is somewhat different from the original
version of Breiman and therefore his theory. First, the bootstrap samples are not done on the
entire data set. Because the data are divided into the data nodes (and thus the mappers), each
mapper realizes its own bootstrap. The mappers therefore realize a training of several trees
in the Forest. The algorithm of the Random Forests of Breiman is therefore partly “fulfilled".
Each mapper performs a part of the forest but on data which are not a “bag” in the sense of a
bagging. Then the forest of each mapper are combined to realize the “global" forest.

Split criterion: The RF in Mahout uses by default non-binary trees. The information gain
(Quinlan, 1986) is the default split criterion used. When a variable is chosen to perform the
split: (i) for numeric attributes two leaves are elaborated after a node, (ii) for categorical vari-
ables Q leaves are elaborated after a node where Q is the number of modalities of the chosen
variable.

Note: It is important to note that Mahout does not handle missing values. So in a first
part of our experiment we replaced all missing values by −9999. For a categorical variable,
substituting−9999 to missing values entails that we consider the missing value as information.
For a numeric variable, the aim is to put a lower value than any other value.

Number of trees: The number of trees influences the AUC value: increasing the number
of trees increases the chances of having discriminating trees. This improvement is especially
observable in the beginning of a curve when plotting the AUC versus the number of trees in
the Forest. For this database, KDD small upselling, the asymptotic good value is close to 4000
but the gain in performances after 1000 is low. The number of trees has also a big influence on
the time which will be necessary to deploy the model. In the experiments presented below in
this paper we set the number of trees to 1000 (therefore to 1000/M for each mapper where M
is the number of mappers).

Combining the trees: After a large number of trees is generated, they vote for the most
popular class.

Our baseline results Orange has developed a powerful software named Khiops www.khiops.
com) which is able to works on very large dataset (Guyon et al., 2010) or on multi table dataset
(Boullé, 2014)). We used this software as a baseline in its “standard version": applied on a sin-
gle database (not on a distributed database) to evaluate the results obtained with the RF from
Mahout. The classifier is an Averaging of Selective Naive Bayes described in (Boullé, 2007)

- 416 -



Thao C., Voisine N., Lemaire V., Trinquart R.

2.3 Datasets

We used 3 types of data (8 datasets) which are:
— Adult: data belonging to the UCI Machine Learning Repository (Bache and Lichman,

2013);
— OCR of the Pascal Large Scale Learning Challenge (Sonnenburg et al., 2008);
— KDD (Large and Small) marketing data provided by Orange for the challenge KDD

2009 (Orange, 2009; Guyon et al., 2010)
Their characteristics are given in Table 1. The criteria used to evaluate the obtained results
is the Area Under the ROC curve (AUC (Fawcett, 2006)). As the name suggests, there is
randomness in the algorithm of the Random Forests. We have therefore performed ten training.
In the remaining of this paper the Train AUC and Test AUC presented in Tables will be the
average AUC over the ten experiments.

Dataset Ni Nn Nc C P PCTrain PCTest #Mappers
Adult 48 842 6 8 2 76.17% 70% 30% 8
OCR 3 500 000 1156 - 2 50% 60% 40% 71
KDD Large Upselling 50 000 14740 260 2 7.4% 50% 50% 27
KDD Large Churn 50 000 14740 260 2 7.3% 50% 50% 27
KDD Large Appetency 50 000 14740 260 2 1.8% 50% 50% 27
KDD Small Upselling 50 000 190 40 2 7.4% 50% 50% 20
KDD Small Churn 50 000 190 40 2 7.3% 50% 50% 20
KDD Small Appetency 50 000 190 40 2 1.8% 50% 50% 20

TAB. 1 – Dataset used: Ni=Number of Instances, Nn=Number of numerical variables ,
Nc=Number of Categorical variabkes, C=Number of Classes, P:Percentage of the target class,
PCTrain: Percentage used for training, PCTest: Percentage used for the test.

2.4 Results with the “standard” library

We present the results that we obtained with the Random Forest of Mahout when using
them with the installation by default of the library: (i) the split criterion is the information
gain, (ii) the missing value are dealt with according to the description given in the previous
section, (iii) the number of trees is 1000, (iv) the number of mappers is indicated in the last
column of the Table 1, (v) the predicted class is the most popular predicted class in the forest.

The table 2 shows (columns 1 and 2) the performances obtained on the Test AUC and the
ratio Train AUC / Test AUC (column 3) to give an element of robustness (a value above 1
indicates an overfitting).The key points of these results are (i) RF exhibit poor results on the
small dataset but have good performance on the largest dataset OCR (the result seems to be
known by the machine learning community (see (Debreuve) slide 17), (ii) the results are not
bad but lower than results of the literature on these datasets, (iii) the results are lower (except
for OCR) than those obtained by Khiops, (iv) a “large” overfitting exists on many of the dataset.

We analyze in deep these results to understand where come from the problems. One of them
comes from the split criterion - the information gain - and another one is the way to deal with
the missing values. For the first one the information gain is biased when there is categorical
variables which have a lot of modalities (Harris, 2002). In this case the individual trees are
less deep and wider. For the second one the initial way to replace the missing value is not

- 417 -



Feedback - Random Forest of Mahout library- Marketing data

appropriate and has to be changed to obtained better results. However the Hadoop framework
allows decreasing a lot the training time as showed in table 3

Dataset Khiops Mahout Robustness Mahout
Adult 0.925 0.910 1.02
KDD Small Upselling 0.872 0.648 1.45
KDD Small Churn 0.731 0.612 1.49
KDD Small Appetency 0.814 0.682 1.44
OCR 0.830 0.953 1.00
KDD Large Upselling 0.897 0.877 1.07
KDD Large Churn 0.743 0.681 1.26
KDD Large Appetency 0.852 0.735 1.30

TAB. 2 – First result with the “standard RF” in Mahout

OCR KDDSmall Upselling KDDLarge Upselling
Khiops 4h55m 28s 45min
Mahout 3m44s 39s 1m9s

TAB. 3 – Training time for Khiops and Mahout

2.5 First Ideas to circumvent the observed problems
Faced with the results obtained in the previous section we try to apply several patches to

Mahout’s RF in order to improve the performance of the library:
— Mahout “2”: where we change the Information Gain to the Gain Ratio;
— Mahout “3”: where the missing values of numerical variables are replaced by the cor-

responding median value (Breiman).

Dataset Khiops Mahout Default Mahout 2 Mahout 3
Adult 0.925 0.910 0.919 0.917
KDD Small Upselling 0.872 0.648 0.690 0.778
KDD Small Churn 0.731 0.612 0.596 0.621
KDD Small Appetency 0.814 0.682 0.667 0.694
OCR 0.830 0.953 0.946 0.953
KDD Large Upselling 0.897 0.877 0.705 0.873
KDD Large Churn 0.743 0.681 0.503 0.681
KDD Large Appetency 0.852 0.735 0.597 0.763

TAB. 4 – Result with the “modified RF” in Mahout. Mahout 2: Mahout with Gain Ratio,
Mahout 3: Mahout with information Gain and missing values replaced by the median value.

The results obtained for the Test AUC with these two modified version are presented in
Table 4. Only the Mahout 3 version has better results than the standard version. But this
improvement could be costly since the median value of all the numerical variables is required
and because the median value has to be computed on the complete dataset (which is split
in different nodes). We also test others modification (not reported here) for the unbalanced
database as the use of square root in the computation of the information gain ((Flach, 2012),
Section “Sensitivity to skewed class distributions” page 143)) ... but without improvement of

- 418 -



Thao C., Voisine N., Lemaire V., Trinquart R.

the results. Faced with these results and still wishing for more robust performances, we turn to
the MODL approach which is known to be robust (Boullé, 2006, 2005).

3 Adding regularization in Random Forest

In this section we show two modifications of decision tree used by Mahout Random For-
est to increase classification performance and reduce over-fitting. The first one relies on the
MODL approach developed for decision tree successfully (Voisine et al., 2010). It consists
in changing the splitting method for numerical variable and introduces a grouping method for
categorical variables. The second improvement consists in changing the voting method of Ma-
hout RF. By default Mahout uses the majority voting method to estimate class probabilities.
We propose to estimate class probabilities by averaging probability estimates in each leaf of
all decision trees.

3.1 Modifications

Adding regularization: We describe new splitting and grouping methods for two classes
learning classification task. The splitting method used MODL discretization criteria based on
MDL approaches. The MODL discretization method for supervised classification provides the
most probable discretization given the data. Extensive comparative experiments report high
performance (Boullé, 2006). The case of value grouping of categorical variables is treated in
(Boullé, 2005) using a similar approach.

A Bayesian approach is applied to select the best discretization model, which is found by
maximizing the probability p(Model|Data) of the model given the data. Using the Bayes rule
and since the probability p(Data) is constant under varying the model, this is equivalent to
maximizing p(Model)p(Data|Model).

We decided in this study to elaborate RF with binary decision tree for classification problem
of two classes which are the more present in the Orange problem. Therefore in each node the
split criterion will be dedicated to find the best split in two intervals for numerical variables
or the best grouping in two groups for categorical variables. This setting allows having fast
algorithm (not detailed in this report due to place consideration).

Let N be the number of instances of a leaf. Ni denotes the number of instances in the
interval i and Nij the number of instances of output value j in the interval i. In our context, the
number of instances N and the number of classes J are supposed to be known. The number of
interval is fixed by two.

For numerical variables (Boullé, 2006) the evaluation criterion when the number of in-
tervals and the number of classes are both equal to 2 and the number of classes is: log 2 +
log(N +1)+log(N1+1)+log(N2+1)+

∑2
i=1 log

Ni!
Ni1!Ni2!

. Once the evaluation criterion is
established, the problem is to design a search algorithm in order to find a discretization model
that minimizes the criterion. In Boullé (2006), a standard greedy bottom-up heuristic is used
to find a good discretization.

For categorical variables Boullé (2005) the evaluation criterion when the numberof groups
is equal to two groups is: V log 2 + log(1− 1

2V −1 ) + log(N + 1) + log(N1 + 1) + log(N2 +

1) +
∑2

i=1 log
Ni!

Ni1!Ni2!
, where V is the number value of a catagorical variable.

- 419 -



Feedback - Random Forest of Mahout library- Marketing data

Voting: Usually the predicted class is based on the votes of the trees for the most popular
class. We change this rule to perform averaging probability estimates in each leaf of all deci-
sion trees, such as: P (CJ |X) = argmaxJ

1
T

∑T
t=1 P (Ct

J), where P (Ct
J) is the terminal leave

of the tree t. In this case the predicted class will be the one with highest probability and the
confidence probability will the corresponding averaging probability. The estimated confidence
will allow a better estimation for the computation of the AUC.

3.2 Results

Dataset Khiops Mahout Mahout 2: Mahout 3: Mahout Mahout
Default Gain Ratio IG + Media MODL MODL + new voting

Adult 0.925 0.910 0.919 0.917 0.911 0.916
KDD Small Upselling 0.872 0.648 0.690 0.778 0.800 0.820
KDD Small Churn 0.731 0.612 0.596 0.621 0.619 0.675
KDD Small Appetency 0.814 0.682 0.667 0.694 0.555 0.754
OCR 0.830 0.953 0.946 0.953 0.947 0.948
KDD Large Upselling 0.897 0.877 0.705 0.873 0.866 0.875
KDD Large Churn 0.743 0.681 0.503 0.681 0.628 0.667
KDD Large Appetency 0.852 0.735 0.597 0.763 0.686 0.725

TAB. 5 – Result of the test AUC with the “modified RF” in Mahout. Mahout 2: Information
Gain replaced with the Gain Ratio, Mahout 3: Mahout with information Gain and missing
values replaced by the median value, Mahout MODL with prediction based on the most popular
class and Mahout MODL with prediction based on averaging probability estimates.

Dataset Number of Nodes Robustness
Mahout Default Mahout MODL Mahout MODL Mahout MODL

Adult 1763 60 1.02 1.00
KDD Small Upselling 9895 5 1.45 1.06
KDD Small Churn 9954 3 1.49 1.12
KDD Small Appetency 4013 2 1.44 1.15
OCR 3396 969 1.00 1.00
KDD Large Upselling 1658 13 1.07 1.02
KDD Large Churn 1864 8 1.26 1.10
KDD Large Appetency 688 5 1.30 0.94

TAB. 6 – Robutness and Model size of the different RF (* mean number per tree)

We compare the new RF which used the MODL approach as split criterion to the results
obtained in the previous section. The results of the “Mahout MODL Random Forest" are
interesting (i) the results are better, see Table 5 (ii) the Robustness is better , see Table 6 and
the models are “smaller” see Table 6. This results are interesting even if they are worse than
the ones obtained by Khiops.

- 420 -



Thao C., Voisine N., Lemaire V., Trinquart R.

4 Future works: a closer look at bootstrap sampling and
data distribution in HDFS

In our study, we have focused so far on understanding how the Mahout’s RF setting did
impact the tree building process and more especially we did focus on the splitting process. One
thing that we did mention but did not dig into is the way the datasets are spread across nodes
and used as a basis for bootstrap sampling. This is what is under scrutiny in this section.

4.1 Block size and data shuffle

When a dataset file is dropped into HDFS, it is divided into blocks of fixed size and those
blocks are spread across the nodes of the cluster. On the Hadoop cluster we have used for
experiments, the default block size is 128MB and we did not change this.

The learning process for Mahout RF consists in a Map-Reduce job: mappers build trees
which are collected by a single Reducer. Each mapper proceeds only one HDFS block: so
the trees built by a single mapper are all based on a sub-sampling limited by the block the
mapper is working on. Hence from the start, the principle of bootstrap sampling is different
from the original version of Breiman: this is no random sampling with replacement over the
whole dataset.

This difference has two major consequences:
— First the initial distribution of the target in the dataset file may have a deep impact

on the trees generated by different mappers. In the worst possible setting, if the rows
in the dataset are sorted by target value, one mapper might proceeds rows that are all
associated with the same target’s modality.

— Second, depending on the number of columns, a block may contain relatively few rows
and trees may be built upon a small sample. This really depends on the block size that
was effective when the dataset was put into HDFS. It may be an issue for those really
large marketing datamarts, which easily encompass over 5000 columns.

The problem of block size might be tackled by studying the impact of block size over
prediction performance for different datasets. Hopefully we may find where to place the cursor
so that we may configure our HDFS system properly for a given datamart. But then this is not
a very agile approach in an environment where we have to consider different datamarts and
where it is easier to add variables to a datamart. And this would not solve the issue of target
distribution.

A more robust approach to simultaneously tackle the two issues mentioned above would be
to design a job that takes care of splitting the initial dataset while taking care of the following
constraints:

— the job should produce N subsets, where N is the degree of parallelism that we wish
for,

— the job should take care of storing each output subset with a specific block size so that
each subset get fully processed by exactly one mapper,

— the job should populate each subset through a process of random sampling with re-
placement over the whole initial dataset

— the job should offer an option to control the way the target’s modalities are distributed
in the subsets (stratified sampling)

- 421 -



Feedback - Random Forest of Mahout library- Marketing data

Algorithm 1 Prepare Dataset Algorithm
Input:

Sample learning Z stored in HDFS
N: degree of parallelism
colTarget: index of the target column in the dataset

Output: Sample learning prepared for Mahout RF stored in HDFS

This is a sequence of two Map-reduce jobs: TargetDistribution→ DatasetSplit

The job TargetDistribution takes for input the dataset Z and outputs distribution of the target modalities.
This first job has only one reducer.

The job DatsetSplit takes for input the dataset Z and outputs the splitted sample learning.
The mappers of DatasetSplit also access the distribution of the target modalities.
This second job has N reducers.

Mapper TargetDistribution
1: targetModality ← extract value at column colTarget from current Row
2: write to reducer < targetModality, 1 >

Reducer TargetDistribution
1: input is of the form < targetModality, List of counters >
2: write < targetModality, sum of counters >

Mapper datasetSplit
1: Before iterating over the rows of the input block, load the target distribution
2: For row from the input block
3: For i=1 to N
4: mod_target← extract target’s modality from current row
5: Draw if you keep the row in this split based on mod_target distribution
6: if so then write < i,filterRows(currentrow > to reducer.

Reducer DatasetSplit
1: input is of the form < reducerindex, List of rows >
2: For aRow ∈ rows
3: write aRow to output Split file.

Such a job could easily be designed as a sequence of two map-reduce jobs. The first one
would estimate the target modalities distribution and the second one would actually perform
the stratified random sampling.

Note that the main subtlety in such an approach resides in correctly handling the size of
the splits with respect to the average size of a row and the number of individuals in the original
datasets. If the rows are really large, it will impact the number of rows we can fit in a single
split, and consequently the size of the sample for building a tree. So large rows call for larger
block size. Another strategy might be to decide that not all columns should be carried into
every split of the datasets: the first step of sampling consists in picking a sub-family of all
columns for any final split of the dataset. This would allow for smaller rows and thus larger
number of rows in each split. The sketch for the map and reduce functions of such a job is
presented in Algorithm 2.

4.2 Shifting trees across nodes

The approach that was sketched in the previous subsection revolved around one main idea:
prepare the data in a more appropriate way so that we could take the best out of Mahout RF
without actually changing the library. But it has a cost in terms of use: one has to duplicate the

- 422 -



Thao C., Voisine N., Lemaire V., Trinquart R.

data from the inital dataset to the prepared splits. This process might take extra-time and cost
extra storage space.

Another approach could be used to the same issue: making sure a tree is built from the
broadest sample of the initial dataset. Our idea is that each mapper is bound to work on only
one HDFS block. So instead of having each mapper responsible for growing complete trees,
we propose to transform the Mahout RF process into an iteration of map-reduce jobs, with trees
only growing by a fraction at each run. Consider you want to build a forest of a T trees (say a
thousand) and the dataset has been split into B blocks (say 10). The process would be initiated
by generating B files, each of these containing T/B (that’s a hundred here) empty trees. Then
we would randomly affect each of these files to each mapper and run one step of the learning
process. This step would grow the trees by two depth degree and store the updated trees into
B files again. Next step is to randomly associate the updated files to mappers again and iterate
until all trees are fully developed.

Such an approach would require substantial coding over the existing Mahout library, espe-
cially to store and parse set of incomplete trees. Plus there are certainly a few parameters to
tune (how much should we develop trees at each step ?). But the advantage is that it is then
possible to build trees from a wider sample set without moving the dataset itself.

5 Conclusion

This study exhibits the behavior of the Random Forest implemented in the Mahout frame-
work on several datasets of interest for Orange. The first statement is the observation, for the
standard version, of performances far below the one that we can observe in the state of the
art. The practical implementation in the framework of Hadoop and Mahout does not respect
totally the theoretical framework. This translates into performances below expectation. We
propose a few evolutions, the main one being the introduction of explicit regularization during
the training of the trees. Our tests on various datasets demonstrate an improvement over the
standard library.

There is nevertheless an important work to realize, according to us, so that random forest
implemented within the framework of Mahout reaches the performances of a batch algorithm.
There is a known compromise between precision and speed / volumetry but the prize to be paid
seems rather important for the moment.

References
The ApachTM Hadoop® project develops open-source software for reliable, scalable, dis-

tributed computing, http://hadoop.apache.org/.
The ApachTM Mahout® project’s goal is to build a scalable machine learning library, http:

//mahout.apache.org/.
Bache, K. and M. Lichman (2013). UCI machine learning repository http://archive.ics.uci.

edu/ml.
Boullé, M. (2005). A Bayes optimal approach for partitioning the values of categorical at-

tributes. Journal of Machine Learning Research 6, 1431–1452.

- 423 -



Feedback - Random Forest of Mahout library- Marketing data

Boullé, M. (2006). MODL: a Bayes optimal discretization method for continuous attributes.
Machine Learning 65(1), 131–165.

Boullé, M. (2014). Towards automatic feature construction for supervised classication. In
ECML/PKDD 2014. accepted for publication.

Boullé, M. (2007). Compression-based averaging of selective naive Bayes classifiers. Journal
of Machine Learning Research 8, 1659–1685.

Breiman, L. Missing value replacement for the training set https://www.stat.berkeley.edu/

~breiman/RandomForests/cc_home.htm#missing1.
Breiman, L. (2001). Random forests. Mach. Learn. 45(1), 5–32.
Debreuve, E. An introduction to random forests http://perso.math.univ-toulouse.fr/motimo/

files/2013/07/random-forest.pdf.
Dream, A. (2013). Evaluer l’apport des plateformes hadoop pour la classification. Master’s

thesis, Polytech Lille.
Fawcett, T. (2006). An introduction to roc analysis. Pattern Recogn. Lett. 27(8), 861–874.
Flach, P. (2012). Machine Learning: The Art and Science of Algorithms That Make Sense of

Data. Cambridge University Press.
Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. In Inter-

national Conference on Mchine Learning (ICML), pp. 148–156. Morgan Kaufmann.
Guyon, I., V. Lemaire, M. Boullé, G. Dror, and D. Vogel (2010). Design and analysis of the kdd

cup 2009: Fast scoring on a large orange customer database. SIGKDD Explor. Newsl. 11(2),
68–76.

Harris, E. (2002). Information gain versus gain ratio: A study of split method biases. In AMAI.
Orange (2009). Kdd cup 2009: Customer relationship prediction – data kddlarge et kddsmall

http://www.sigkdd.org/kdd-cup-2009-customer-relationship-prediction.
Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn. 1(1), 81–106.
Sonnenburg, S., V. Franc, E. Yom-Tov, and M. Sebag (2008). Pascal large scale learning

challenge – ocr http://largescale.ml.tu-berlin.de/about/".
Voisine, N., M. Boullé, and C. Hue (2010). A bayes evaluation criterion for decision trees.

Advances in Knowledge Discovery and Management (AKDM-1) 292, 21–38.

Résumé
L’apprentissage automatique a fait son apparition dans l’écosystème Hadoop créant, de

par la puissance promise, une opportunité sans précédent pour ce domaine. Dans cet éco-
système, Apache Mahout est une réponse à la question du temps de calcul et/ou de la vo-
lumétrie: il consiste en un entrepôt d’algorithmes d’apprentissage automatique, tous portés
afin de s’exécuter sur Map/Reduce. Ce rapport se concentre sur le portage et l’utilisation de
l’algorithme des Random Forest dans Mahout. Il montre à travers notre retour d’expérience
les difficultés qui peuvent être rencontrées tant pratiques que théoriques et suggère une piste
d’amélioration.

- 424 -


	G - Session Industrielle
	Feedback - Study and Improvement of the Random Forest of the Mahout library in the context of marketing data of Orange Cedric Thao, Nicolas Voisine, Vincent Lemaire, Romain Trinquart


